Lunghi C, Burr DC, Morrone C. Brief periods of monocular deprivation disrupt ocular balance in human adult visual cortex. Curr Biol. 2011;21(14):R538–9.
Article
CAS
PubMed
Google Scholar
Zhou J, Clavagnier S, Hess RF. Short-term monocular deprivation strengthens the patched eye’s contribution to binocular combination. J Vision. 2013;13(5):12.
Article
Google Scholar
Kim HW, Kim CY, Blake R. Monocular perceptual deprivation from interocular suppression temporarily imbalances ocular dominance. Curr Biol. 2017;27(6):884–9.
Article
CAS
PubMed
Google Scholar
Min SH, Baldwin AS, Reynaud A, Hess RF. The shift in ocular dominance from short-term monocular deprivation exhibits no dependence on duration of deprivation. Sci Rep. 2018;8(1):17083.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chadnova E, Reynaud A, Clavagnier S, Hess RF. Short-term monocular occlusion produces changes in ocular dominance by a reciprocal modulation of interocular inhibition. Sci Rep. 2017;7:41747.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Baker DH, Simard M, Saint-Amour D, Hess RF. Short-term monocular patching boosts the patched eye’s response in visual cortex. Restor Neurol Neurosci. 2015;33(3):381–7.
PubMed
PubMed Central
Google Scholar
Lunghi C, Berchicci M, Morrone MC, Di Russo F. Short-term monocular deprivation alters early components of visual evoked potentials. J Physiol. 2015;593(19):4361–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attebo K, Mitchell P, Cumming R, Smith W, Jolly N, Sparkes R. Prevalence and causes of amblyopia in an adult population. Ophthalmology. 1998;105(1):154–9.
Article
CAS
PubMed
Google Scholar
Scheiman MM, Hertle RW, Beck RW, Edwards AR, Birch E, Cotter SA, et al. Randomized trial of treatment of amblyopia in children aged 7 to 17 years. Arch Ophthalmol. 2005;123(4):437–47.
Article
PubMed
Google Scholar
Birch EE. Amblyopia and binocular vision. Prog Retin Eye Res. 2013;33:67–84.
Article
PubMed
Google Scholar
Chen S, Min SH, Cheng Z, Xiong Y, Yu X, Wei L, et al. Binocular visual deficits at mid to high spatial frequency in treated amblyopes. iScience. 2021;24(7):102727.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, He Z, Mao Y, Chen H, Zhou J, Hess RF. Patching and suppression in amblyopia: one mechanism or two? Front Neurosci. 2020;13:1364.
Article
PubMed
PubMed Central
Google Scholar
Zhou J, Thompson B, Hess RF. A new form of rapid binocular plasticity in adult with amblyopia. Sci Rep. 2013;3:2638.
Article
PubMed
PubMed Central
Google Scholar
Zhou J, He Z, Wu Y, Chen Y, Chen X, Liang Y, et al. Inverse occlusion: a binocularly motivated treatment for amblyopia. Neural Plast. 2019;2019:5157628.
PubMed
PubMed Central
Google Scholar
Lunghi C, Sframeli AT, Lepri A, Lepri M, Lisi D, Sale A, et al. A new counterintuitive training for adult amblyopia. Ann Clin Transl Neur. 2018;6(2):274–84.
Article
Google Scholar
Başgöze Z, Mackey AP, Cooper EA. Plasticity and adaptation in adult binocular vision. Curr Biol. 2018;28(24):R1406–13.
Article
PubMed
CAS
Google Scholar
Castaldi E, Lunghi C, Morrone MC. Neuroplasticity in adult human visual cortex. Neurosci Biobehav Rev. 2020;112:542–52.
Article
PubMed
Google Scholar
Lunghi C, Galli-Resta L, Binda P, Cicchini GM, Placidi G, Falsini B, et al. Visual cortical plasticity in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2019;60(7):2753–63.
Article
PubMed
Google Scholar
Nguyen BN, Malavita M, Carter OL, McKendrick AM. Neuroplasticity in older adults revealed by temporary occlusion of one eye. Cortex. 2021;143:1–11.
Article
PubMed
Google Scholar
Levi DM, Harwerth RS, Manny RE. Suprathreshold spatial frequency detection and binocular interaction in strabismic and anisometropic amblyopia. Invest Ophthalmol Vis Sci. 1979;18(7):714–25.
CAS
PubMed
Google Scholar
Bradley A, Freeman RD. Contrast sensitivity in anisometropic amblyopia. Invest Ophthalmol Vis Sci. 1981;21(3):467–76.
CAS
PubMed
Google Scholar
Kwon M, Wiecek E, Dakin SC, Bex PJ. Spatial-frequency dependent binocular imbalance in amblyopia. Sci Rep. 2015;5:17181.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mao Y, Min SH, Chen S, Gong L, Chen H, Hess RF, et al. Binocular imbalance in amblyopia depends on spatial frequency in binocular combination. Invest Ophthalmol Vis Sci. 2020;61(8):7.
Article
PubMed
PubMed Central
Google Scholar
Binda P, Kurzawski JW, Lunghi C, Biagi L, Tosetti M, Morrone MC. Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD. Elife. 2018;7:e40014.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, He Z, Liang Y, Chen Y, Gong L, Mao Y, et al. The binocular balance at high spatial frequencies as revealed by the binocular orientation combination task. Front Hum Neurosci. 2019;13:106.
Article
PubMed
PubMed Central
Google Scholar
Min SH, Mao Y, Chen S, He Z, Hess RF, Zhou J. A clinically convenient test to measure binocular balance across spatial frequency in amblyopia. iScience. 2021;25(1):103652.
Article
PubMed
PubMed Central
Google Scholar
Ding J, Klein SA, Levi DM. Binocular combination in abnormal binocular vision. J Vis. 2013;13(2):14.
Article
PubMed
PubMed Central
Google Scholar
Brainard DH. The psychophysics toolbox. Spat Vis. 1997;10(4):433–6.
Article
CAS
PubMed
Google Scholar
Dane A, Dane S. Correlations among handedness, eyedness, monocular shifts from binocular focal point, and nonverbal intelligence in university mathematics students. Percept Mot Skills. 2004;99(2):519–24.
Article
PubMed
Google Scholar
Virathone L, Nguyen BN, Dobson F, Carter OL, McKendrick AM. Exercise alone impacts short-term adult visual neuroplasticity in a monocular deprivation paradigm. J Vis. 2021;21(11):12.
Article
PubMed
PubMed Central
Google Scholar
Lunghi C, Sale A. A cycling lane for brain rewiring. Curr Biol. 2015;25(23):R1122–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team J. JASP (Version 0.16.3) [Computer software] 2022. https://jasp-stats.org/.
Jeffreys H. Theory of probability. 3rd ed. Oxford: UK Oxford University Press, Clarendon Press; 1961.
Google Scholar
Min SH, Baldwin AS, Hess RF. Ocular dominance plasticity: a binocular combination task finds no cumulative effect with repeated patching. Vision Res. 2019;161:36–42.
Article
PubMed
Google Scholar
Zhou J, Feng L, Lin H, Hess RF. On the maintenance of normal ocular dominance and a possible mechanism underlying refractive adaptation. Invest Ophthalmol Vis Sci. 2016;57(13):5181–5.
Article
PubMed
Google Scholar
Ding J, Sperling G. A gain-control theory of binocular combination. Proc Natl Acad Sci U S A. 2006;103(4):1141–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang CB, Zhou J, Lu ZL, Feng L, Zhou Y. Binocular combination in anisometropic amblyopia. J Vis. 2009;9(3):17.1-16.
Article
Google Scholar
Spiegel DP, Baldwin AS, Hess RF. The relationship between fusion, suppression, and diplopia in normal and amblyopic vision. Invest Ophthalmol Vis Sci. 2016;57(13):5810–7.
Article
PubMed
Google Scholar
Yehezkel O, Ding J, Sterkin A, Polat U, Levi DM. Binocular combination of stimulus orientation. R Soc Open Sci. 2016;3(11):160534.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, McGraw P, Ledgeway T. Attentional eye selection modulates sensory eye dominance. Vis Res. 2021;188:10–25.
Article
PubMed
Google Scholar
Song F, Lyu L, Zhao J, Bao M. The role of eye-specific attention in ocular dominance plasticity. Cereb Cortex. 2022. https://doi.org/10.1093/cercor/bhac116.
Article
PubMed
Google Scholar
Wang M, McGraw P, Ledgeway T. Short-term monocular deprivation reduces inter-ocular suppression of the deprived eye. Vision Res. 2020;173:29–40.
Article
PubMed
Google Scholar
Zhou J, Reynaud A, Kim YJ, Mullen KT, Hess RF. Chromatic and achromatic monocular deprivation produce separable changes of eye dominance in adults. Proc Biol Sci. 2017;284(1867):20171669.
Google Scholar
Zhou J, Reynaud A, Hess RF. Real-time modulation of perceptual eye dominance in humans. Proc Biol Sci. 2014;281(1795):20141717.
PubMed
PubMed Central
Google Scholar
Sirovich L, Uglesich R. The organization of orientation and spatial frequency in primary visual cortex. Proc Natl Acad Sci U S A. 2004;101(48):16941–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Anderson TJ, Casagrande VA. How do functional maps in primary visual cortex vary with eccentricity? J Comp Neurol. 2007;501(5):741–55.
Article
PubMed
Google Scholar
Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160(1):106–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spiegel DP, Baldwin AS, Hess RF. Ocular dominance plasticity: inhibitory interactions and contrast equivalence. Sci Rep. 2017;7:39913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellemberg D, Hammarrenger B, Lepore F, Roy MS, Guillemot JP. Contrast dependency of VEPs as a function of spatial frequency: the parvocellular and magnocellular contributions to human VEPs. Spat Vis. 2001;15(1):99–111.
Article
CAS
PubMed
Google Scholar
Lu HD, Roe AW. Optical imaging of contrast response in Macaque monkey V1 and V2. Cereb Cortex. 2007;17(11):2675–95.
Article
PubMed
Google Scholar
Lunghi C, Burr DC, Morrone MC. Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color. J Vis. 2013;13(6):1.
Article
PubMed
Google Scholar
Finn AE, Baldwin AS, Reynaud A, Hess RF. Visual plasticity and exercise revisited: no evidence for a “cycling lane.” J Vis. 2019;19(6):21.
Article
PubMed
Google Scholar
Zhou J, Reynaud A, Hess RF. Aerobic exercise effects on ocular dominance plasticity with a phase combination task in human adults. Neural Plast. 2017;2017:4780876.
PubMed
PubMed Central
Google Scholar
Bai J, Dong X, He S, Bao M. Monocular deprivation of Fourier phase information boosts the deprived eye’s dominance during interocular competition but not interocular phase combination. Neuroscience. 2017;352:122–30.
Article
CAS
PubMed
Google Scholar
Zhang P, Bao M, Kwon M, He S, Engel SA. Effects of orientation-specific visual deprivation induced with altered reality. Curr Biol. 2009;19(22):1956–60.
Article
CAS
PubMed
Google Scholar
Kohn A. Visual adaptation: physiology, mechanisms, and functional benefits. J Neurophysiol. 2007;97(5):3155–64.
Article
PubMed
Google Scholar
Wang Y, Yao Z, He Z, Zhou J, Hess RF. The cortical mechanisms underlying ocular dominance plasticity in adults are not orientationally selective. Neuroscience. 2017;367:121–6.
Article
CAS
PubMed
Google Scholar