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Abstract 

Background:  Myopic maculopathy (MM) has become a major cause of visual impairment and blindness worldwide, 
especially in East Asian countries. Deep learning approaches such as deep convolutional neural networks (DCNN) 
have been successfully applied to identify some common retinal diseases and show great potential for the intelligent 
analysis of MM. This study aimed to build a reliable approach for automated detection of MM from retinal fundus 
images using DCNN models.

Methods:  A dual-stream DCNN (DCNN-DS) model that perceives features from both original images and corre-
sponding processed images by color histogram distribution optimization method was designed for classification of 
no MM, tessellated fundus (TF), and pathologic myopia (PM). A total of 36,515 gradable images from four hospitals 
were used for DCNN model development, and 14,986 gradable images from the other two hospitals for external 
testing. We also compared the performance of the DCNN-DS model and four ophthalmologists on 3000 randomly 
sampled fundus images.

Results:  The DCNN-DS model achieved sensitivities of 93.3% and 91.0%, specificities of 99.6% and 98.7%, areas under 
the receiver operating characteristic curves (AUC) of 0.998 and 0.994 for detecting PM, whereas sensitivities of 98.8% 
and 92.8%, specificities of 95.6% and 94.1%, AUCs of 0.986 and 0.970 for detecting TF in two external testing datasets. 
In the sampled testing dataset, the sensitivities of four ophthalmologists ranged from 88.3% to 95.8% and 81.1% to 
89.1%, and the specificities ranged from 95.9% to 99.2% and 77.8% to 97.3% for detecting PM and TF, respectively. 
Meanwhile, the DCNN-DS model achieved sensitivities of 90.8% and 97.9% and specificities of 99.1% and 94.0% for 
detecting PM and TF, respectively.

Conclusions:  The proposed DCNN-DS approach demonstrated reliable performance with high sensitivity, specificity, 
and AUC to classify different MM levels on fundus photographs sourced from clinics. It can help identify MM auto-
matically among the large myopic groups and show great potential for real-life applications.
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Background
The prevalence of myopia is rising rapidly in many coun-
tries and poses a heavy public health burden and cost to 
society. By 2050, it is estimated that 50% and 10% of the 
world will have myopia and high myopia (HM), respec-
tively [1, 2]. Pathologic myopia (PM) degenerates from 
HM and includes a set of principal alterations, such as 
excessive axial elongation of the globe, posterior staphy-
loma, optic disc changes, and myopic maculopathy 
(MM). These pathological changes, particularly MM, 
cause severe visual loss in patients with PM over time [3]. 
In fact, MM, also known as myopic macular degenera-
tion, has become a major cause of visual impairment and 
blindness worldwide, especially in East Asian countries 
[4–9].

Early detection of MM, along with timely management 
and treatment, are essential for preventing vision loss 
[10]. However, there is a disproportionately low num-
ber of ophthalmologists available to manage high-risk 
groups, especially in underdeveloped countries [11, 12]. 
Automated detection of MM via artificial intelligence 
shows great potential to resolve this issue. In recent years, 
deep learning approaches such as deep convolutional 
neural networks (DCNN) have been successfully applied 
in the automated detection of common fundus dis-
eases, such as diabetic retinopathy, age-related macular 
degeneration, glaucomatous optic neuropathy and retin-
opathy of prematurity, from color fundus photographs 
[13–20]. Inspired by this, DCNN models were applied 
to tackle the identification and classification of PM and 
the segmentation of PM-related lesions; feasibility was 
demonstrated using a limited dataset of 1200 color fun-
dus images released by the International Symposium on 
Biomedical Imaging [21, 22]. Then, three medical stud-
ies that adopted deep learning methods to identify MM 
from fundus images were published in 2021 [23–25]. The 
sizes of datasets and the MM categories to be automati-
cally distinguished varied in these studies. However, the 
reported performances showed visible declines in the 
external testing datasets in two studies [23, 24] and the 
number of fundus images used for external testing in 
another study [25] was also relatively small.

In this study we established a large database includ-
ing over 50,000 color fundus images from a range of 
camera devices at multiple medical centers. A reliable 
DCNN approach was proposed to automatically iden-
tify MM with different severity levels and overcome the 
effects of variations in our large-scale database. We then 

conducted a series of comparison experiments to assess 
the performance of this approach.

Patients and methods
This study was approved by the Institutional Review 
Board of Qingdao Eye Hospital of Shandong First Medi-
cal University and conducted in accordance with the 
Declaration of Helsinki. Informed consent was waived 
by the medical ethics committee due to the retrospec-
tive design with analysis of fully anonymous color fundus 
images.

Data and grading
In this study, a total of 57,148 color fundus images from 
29,230 patients were collected from ophthalmology clin-
ics of six hospitals in China between May 2018 and May 
2020. They were captured using different types of non-
mydriatic fundus cameras (e.g., Topcon, Canon, Zeiss, 
Kowa, Syseye) that mainly adopted the 45° macula-cen-
tered imaging protocol. If there were two or more images 
taken for one unique eye, the latest image was reserved. 
Fundus images from four hospitals were used to develop 
the DCNN models, and those from the other two hospi-
tals were reserved for external testing. Detailed charac-
teristics of the datasets are summarized in Table 1.

According to the META-PM study [3], MM was divided 
into five categories according to the disease severity on 
color fundus images. They consist of “no myopic reti-
nal lesions” (category 0), “tessellated fundus (TF) only” 
(category 1), “diffuse chorioretinal atrophy” (category 2), 
“patchy chorioretinal atrophy” (category 3), and “macu-
lar atrophy” (category 4). Several plus lesions supple-
ment the META-PM categories, including lacquer cracks, 
myopic choroidal neovascularization, and Fuchs’ spot. In 
this study, no MM and TF were equivalent to category 0 
and 1 respectively, while PM was defined as category 2 to 
4 or presence of any plus lesions.

Images of poor quality (where ≥ 50% of the macu-
lar area was obscured caused by severe artifact, defocus 
blurring and too dark or too light illumination) or wrong 
field definition (not macula-centered fundus photo-
graphs) were excluded by means of manually reviewing 
fundus images. The remaining gradable images would be 
labeled as one of the three MM severity levels (no MM, 
TF, and PM). All fundus images in the development and 
external testing datasets were subjected to a multiple-tier 
labeling process performed by four reading ophthalmolo-
gists (LQQ, XSY, DQ, and ZZC) with over two  years’ 

Keywords:  Myopic maculopathy, Tessellated fundus, Pathologic myopia, Deep convolutional neural network, Color 
fundus image
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experience and two retinal experts (GY and LJ) with more 
than 15 years of clinical experience. Firstly, four reading 
ophthalmologists were informed of the grading criteria. 
They achieved a high level of agreement (κ ≥ 0.75) on a 
test set jointly established by two retinal experts, which 
consisted of 100 fundus images (10 poor-quality, 30 no 
MM, 30 TF and 30 PM) picked from the collected data-
sets. Secondly, all images were randomly divided among 
the four ophthalmologists for quality control checks so 
that unqualified images are excluded. Thirdly, each of the 
remaining gradable images was randomly assigned to any 
two of the four ophthalmologists for independent grad-
ing of MM severity levels (no MM, TF, and PM). Finally, 
those images with inconsistent third-tier grading results 
were randomly sent to one of the two retinal experts 
to determine the final outcomes. The grading results 
obtained in the above process were considered as the ref-
erence standard for this study; the distribution is shown 
in Table 1.

Image processing
Fundus images captured from different cameras and sites 
vary in brightness, contrast, and color balance. To alle-
viate the influence caused by these variations, we devel-
oped an automated image processing method via color 
histogram distribution optimization (CHDO) based 
on the Age-Related Eye Disease Study 2 report [26]. It 
consists of the following steps: (1) selecting an optimal 
standardized image as the template image; (2) shifting the 

histogram distribution of color channels from the input 
image to the target image via a linear transformation 
that makes the average brightness and standard devia-
tion values of blue, green, and red channels within the 
foreground region of the input image consistent with the 
template image; and (3) applying contrast limited adap-
tive histogram equalization [27] for enhancement.

DCNN development
In this study, a dual-stream architecture-based DCNN 
(DCNN-DS) was used to classify different stages of MM, 
as shown in Fig.  1. The original image and correspond-
ing image processed by the CHDO method were both 
cropped, padded, and resized to 512 × 512 pixel reso-
lution then input to the upper and bottom branches, 
respectively. The two branches share the same network 
structure, using EfficientNet-B0 [28] as the backbone. The 
initial weights of EfficientNet-B0 were pretrained on the 
large public database of ImageNet [29]. Two 1280-chan-
nel feature maps separately generated from the upper and 
lower branches were concatenated as a 2560-channel fea-
ture map. The fused feature map was compressed to form 
a 2560-dim feature vector which was fed into a full con-
nection layer then a SoftMax layer providing probability 
scores of no MM, TF, and PM. Besides, the predicted 
class score was mapped back to the fused feature map to 
generate the class activation map (CAM) [30] for high-
lighting the class-specific discriminative regions.

Fig. 1  The framework of our proposed DCNN approach. a The processed images have more uniform color histogram distribution and better 
clarity than the original images in most cases. b Brief structure of the DCNN-DS model using both original and processed images as inputs. c 
The classification output into no MM, TF, or PM. MM, myopic maculopathy; TF, tessellated fundus; PM, pathologic myopia; CHDO, color histogram 
distribution optimization; Conv, convolution; MBConv, mobile inverted bottlrneck convolution; Concat, concatenation; GAP, global average pooling; 
FC, full connection
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The DCNN-DS model combines informative features 
from the original and processed images. All gradable fun-
dus images in the development dataset were randomly 
divided into two parts: 80% were used for training and the 
remaining 20% for validation. Focal loss [31] and Adam 
optimizer [32] were utilized for training on this multi-
class classification task. The model with highest accuracy 
on the internal validation dataset was selected. For com-
parison, two single-stream EfficientNet-B0-based DCNNs 
from original images (DCNN-O) and processed images 
(DCNN-P) were built using the same datasets.

Models testing
Two large datasets from the Shandong Eye Hospital 
(SDEH) and Qingdao Eye Hospital (QDEH) were used 
for external testing of the DCNN-DS model as well as the 
other two DCNN models. Details of SDEH and QDEH 
datasets are listed in Table 1. In addition, we constructed 
a comparison testing dataset by randomly sampling 
3000 gradable fundus images from the two external test-
ing datasets, of which 1488 and 1512 images were from 
SDEH and QDEH, respectively. Two junior testing oph-
thalmologists (LX and LXY) with less than two years of 
clinical experience and two senior testing ophthalmolo-
gists (QY and ZZF) with over five years of clinical expe-
rience were invited to independently label these images. 
The performances of four testing ophthalmologists and 
DCNN-DS model were assessed in this dataset according 
to the reference standard.

Evaluation metrics
Three probability scores corresponding to no MM, TF, 
and PM were generated for each image passing through 
the DCNN models. The final classification result was 
determined by taking the category with the maximum 
probability score. Compared with the reference standard, 
we calculated the overall accuracies and κ scores of the 
DCNN models on the internal validation and external 
testing datasets. Sensitivity and specificity were assessed 
to measure the diagnostic accuracy of TF and PM 
according to the one-versus-rest strategy. In addition, we 
plotted the receiver operating characteristic curves of TF 
versus others (no MM + PM) and PM versus others (no 
MM + TF), then computed the AUCs to further assess 
diagnostic accuracy of different DCNN models to detect 
TF and PM. Two-tailed 95% confidence intervals (CIs) 
were also calculated for sensitivity, specificity, and AUC.

Results
The development dataset included 40,594 fundus images 
obtained from four hospitals; 36,515 (89.9%) passed 
image quality control and were graded by ophthalmolo-
gists. Of these, 7302 images including 5292 (72.5%) no 

MM, 987 (13.5%) TF, and 1023 (14.0%) PM were ran-
domly selected for internal validation. Table  2 shows 
the performances of the DCNN approaches both in four 
subsets broken down by image source and the overall 
validation dataset. Among the whole internal validation 
dataset, the overall accuracies of three models (DCNN-
DS, DCNN-P, and DCNN-O) were 96.5%, 93.0%, and 
90.5%, with κ scores of 0.922, 0.849, and 0.799, respec-
tively. For detecting PM, the DCNN-DS model achieved 
a sensitivity of 96.4%, specificity of 99.2%, and an AUC 
of 0.997, followed by DCNN-P (sensitivity = 92.8%, 
specificity = 98.7%, AUC = 0.996), and DCNN-O (sen-
sitivity = 88.8%, specificity = 97.8%, AUC = 0.991). For 
detecting TF, the DCNN-DS model achieved a sensi-
tivity of 93.6%, specificity of 97.2%, and AUC of 0.985, 
followed by DCNN-P (sensitivity = 91.8%, specific-
ity = 93.9%, AUC = 0.975), and DCNN-O (sensitiv-
ity = 91.2%, specificity = 91.9%, AUC = 0.966).

The SDEH and QDEH datasets, which were used for 
external testing of the DCNN models, consisted of 7077 
[506 (7.2%) PM, 1687 (23.8%) TF] and 7909 [654 (8.3%) 
PM, 747 (9.4%) TF] gradable images, respectively. The 
performances of three DCNN models for these two data-
sets are presented in Table  2 and Fig.  2. In the SDEH 
dataset, the accuracies were 96.3%, 93.9%, and 92.5%, the 
κ scores were 0.922, 0.872, and 0.844 for the DCNN-DS, 
DCNN-P and DCNN-O models, respectively. For detect-
ing PM, the DCNN-DS model achieved a sensitivity of 
93.3%, specificity of 99.6%, and AUC of 0.998, followed 
by DCNN-P (sensitivity = 88.1%, specificity = 98.7%, 
AUC = 0.995), and DCNN-O (sensitivity = 88.7%, speci-
ficity = 98.9%, AUC = 0.996). For detecting TF, the 
DCNN-DS model achieved a sensitivity of 98.8%, speci-
ficity of 95.6%, and AUC of 0.986, followed by DCNN-P 
(sensitivity = 92.5%, specificity = 94.5%, AUC = 0.972), 
and DCNN-O (sensitivity = 94.7%, specificity = 91.9%, 
AUC = 0.970). In the QDEH dataset, the accuracies 
were 93.0%, 92.3%, and 90.6%, and the κ scores were 
0.797, 0.772, and 0.731 for the DCNN-DS, DCNN-P and 
DCNN-O models, respectively. For detecting PM, the 
DCNN-DS model achieved a sensitivity of 91.0%, speci-
ficity of 98.7%, and AUC of 0.994, followed by DCNN-P 
(sensitivity = 79.8%, specificity = 98.5%, AUC = 0.990), 
and DCNN-O (sensitivity = 74.5%, specificity = 98.2%, 
AUC = 0.987). For detecting TF, the DCNN-DS model 
achieved a sensitivity of 92.8%, specificity of 94.1%, and 
AUC of 0.970, followed by DCNN-P (sensitivity = 87.1%, 
specificity = 93.8%, AUC = 0.967), and DCNN-O (sensi-
tivity = 89.0%, specificity = 91.7%, AUC = 0.960). Figure 3 
shows some typical examples of true positive as well as 
false negative and false positive images recognized by 
the DCNN-DS model, together with the CAMs that have 
been superimposed on the images.
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The comparison results of the DCNN-DS model and 
four testing ophthalmologists of different tiers on the 
sampled testing dataset of 3000 [240 (8.0%) PM, 466 
(15.5%) TF] images are shown in Fig. 4. The overall accu-
racies and κ scores of the ophthalmologists ranged from 
77.4% to 95.7% and 0.551 to 0.890, while the DCNN-DS 
model achieved 94.0% accuracy with a κ score of 0.856. 
For detecting PM, ophthalmologist sensitivities ranged 
from 88.3% to 95.8%, and the specificities ranged from 
95.9% to 99.2%. The average sensitivity and specificity of 
two junior ophthalmologists were 95.0% and 96.0%, while 
those of two senior ophthalmologists were 90.4% and 
98.3%, respectively. Meanwhile, the sensitivity, specificity, 
and AUC of the DCNN-DS model were 90.8%, 99.1%, and 
0.996, respectively. For detecting TF, ophthalmologist 

sensitivities ranged from 81.1% to 89.1%, and the specifi-
cities ranged from 77.8% to 97.3%. The average sensitiv-
ity and specificity of two junior ophthalmologists were 
81.9% and 83.2%, while those of two senior ophthalmolo-
gists were 85.9% and 96.5%, respectively. The sensitivity, 
specificity, and AUC of the DCNN-DS model were 97.9%, 
94.0%, and 0.979, respectively.

Discussion
In this study, we aimed to develop DCNN-based meth-
ods for the automated detection of MM with high reli-
ability from color fundus images. The major highlights 
of our study lies in three aspects: (1) building up a large 
database of color fundus photographs from six medical 
centers and performing a consistent multi-tier grading 

Table 2  Performance of the DCNN models on the internal validation and external testing datasets

AUC​ = area under the curve; CI = confidence interval; PM = pathologic myopia; TF = tessellated fundus

Model Accuracy (%) κ Sensitivity (%, 95% CI) Specificity (%, 95% CI) AUC (95% CI)

PM TF PM TF PM TF

Internal validation

 Qingdao Eye Hospital North Branch of Shandong First Medical University (Camera: Canon, Syseye)

  DCNN-DS 96.5 0.922 96.6 (94.1–98.1) 94.7 (91.8–96.6) 99.3 (98.8–99.6) 97.0 (96.2–97.6) 0.998 (0.996–0.999) 0.989 (0.984–0.992)

  DCNN-P 93.1 0.862 93.2 (90.1–95.5) 93.1 (90.0–95.3) 98.8 (98.2–99.1) 94.1 (93.1–95.0) 0.995 (0.992–0.997) 0.978 (0.972–0.983)

  DCNN-O 90.5 0.800 88.8 (85.1–91.7) 91.9 (88.6–94.3) 97.9 (97.2–98.4) 91.8 (90.6–92.9) 0.991 (0.987–0.994) 0.968 (0.961–0.974)

 Rongcheng Eye Hospital (Camera: Zeiss)

  DCNN-DS 96.8 0.928 97.8 (95.6–99.0) 91.4 (87.6–94.1) 99.0 (98.4–99.3) 97.7 (97.0–98.3) 0.998 (0.995–0.999) 0.983 (0.977–0.987)

  DCNN-P 93.2 0.853 93.3 (90.1–95.5) 90.7 (86.9–93.6) 98.7 (98.0–99.1) 94.1 (93.0–95.0) 0.997 (0.994–0.999) 0.972 (0.965–0.978)

  DCNN-O 90.3 0.796 90.8 (87.3–93.5) 89.2 (85.2–92.3) 97.6 (96.8–98.2) 92.2 (91.0–93.3) 0.992 (0.988–0.995) 0.962 (0.954–0.969)

 Qilu Hospital of Shandong University (Qingdao) (Camera: Canon)

  DCNN-DS 95.6 0.903 93.8 (88.2–96.9) 92.6 (86.8–96.0) 99.3 (98.5–99.7) 96.4 (94.9–97.5) 0.997 (0.991–0.999) 0.984 (0.974–0.990)

  DCNN-P 93.6 0.862 92.4 (86.5–96.0) 92.6 (86.8–96.0) 99.0 (98.0–99.5) 94.2 (92.4–95.6) 0.995 (0.989–0.998) 0.982 (0.972–0.988)

  DCNN-O 90.4 0.798 83.4 (76.2–88.9) 93.2 (87.6–96.5) 98.3 (97.2–99.0) 91.4 (89.3–93.1) 0.989 (0.981–0.994) 0.966 (0.953–0.975)

 No. 971 Hospital of the People’s Liberation Army (Camera: Topcon)

  DCNN-DS 96.9 0.928 94.3 (88.1–97.5) 97.5 (92.4–99.4) 99.3 (98.3–99.7) 97.3 (95.9–98.3) 0.989 (0.980–0.994) 0.981 (0.970–0.988)

  DCNN-P 91.6 0.811 90.2 (83.1–94.6) 89.3 (82.1–94.0) 98.5 (97.4–99.2) 92.6 (90.5–94.3) 0.991 (0.983–0.995) 0.962 (0.948–0.972)

  DCNN-O 91.0 0.802 88.5 (81.2–93.4) 91.8 (85.1–95.8) 97.9 (96.7–98.8) 92.0 (89.9–93.7) 0.988 (0.979–0.993) 0.968 (0.955–0.977)

 Overall

  DCNN-DS 96.5 0.922 96.4 (95.0–97.4) 93.6 (91.9–95.0) 99.2 (98.9–99.4) 97.2 (96.8–97.6) 0.997 (0.995–0.998) 0.985 (0.982–0.988)

  DCNN-P 93.0 0.849 92.8 (91.0–94.2) 91.8 (89.9–93.4) 98.7 (98.4–99.0) 93.9 (93.3–94.5) 0.996 (0.994–0.997) 0.975 (0.971–0.978)

  DCNN-O 90.5 0.799 88.8 (86.6–90.6) 91.2 (89.2–92.8) 97.8 (97.5–98.2) 91.9 (91.2–92.6) 0.991 (0.989–0.993) 0.966 (0.962–0.970)

External testing

 Shandong Eye Hospital of Shandong First Medical University (Camera: Topcon)

  DCNN-DS 96.3 0.922 93.3 (90.6–95.2) 98.8 (98.1–99.2) 99.6 (99.5–99.8) 95.6 (95.0–96.1) 0.998 (0.997–0.999) 0.986 (0.983–0.988)

  DCNN-P 93.9 0.872 88.1 (84.9–90.8) 92.5 (91.1–93.7) 98.7 (98.4–98.9) 94.5 (93.8–95.1) 0.995 (0.993–0.996) 0.972 (0.968–0.976)

  DCNN-O 92.5 0.844 88.7 (85.6–91.3) 94.7 (93.5–95.7) 98.9 (98.7–99.2) 91.9 (91.1–92.6) 0.996 (0.994–0.997) 0.970 (0.966–0.974)

 Qingdao Eye Hospital of Shandong First Medical University (Camera: Kowa)

  DCNN-DS 93.0 0.797 91.0 (88.5–93.0) 92.8 (90.6–94.5) 98.7 (98.4–98.9) 94.1 (93.5–94.6) 0.994 (0.992–0.995) 0.970 (0.966–0.974)

  DCNN-P 92.3 0.772 79.8 (76.5–82.8) 87.1 (84.5–89.4) 98.5 (98.1–98.7) 93.8 (93.2–94.4) 0.990 (0.988–0.992) 0.967 (0.963–0.971)

  DCNN-O 90.6 0.731 74.5 (70.9–77.7) 89.0 (86.5–91.1) 98.2 (97.9–98.5) 91.7 (91.1–92.4) 0.987 (0.984–0.989) 0.960 (0.955–0.964)
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process for the MM research; (2) addressing a novel 
image preprocessing methodology to prepare color fun-
dus images for use in a dual-steam DCNN model; and (3) 
thoroughly validating the proposed DCNN model using 
two large external testing datasets and executing compar-
ative experiments with ophthalmologists to demonstrate 
the reliability of our proposed DCNN approach.

Several studies achieved promising results on the 
lesions segmentation and binary classification of PM 
by applying DCNN approaches on a public dataset 
containing 1200 fundus images. More extensive valida-
tions were required to demonstrate generalizability of 
these DCNN models [21, 22]. Tan et  al. [23] collected 
226,686 fundus images from nine multiethnic cohorts 
from six regions and performed thorough validations 
of the developed deep learning algorithms for classify-
ing MM and HM. The scale and diversity of the data-
sets used in this study were quite impressive, while the 
annotations of MM and HM were not conducted by 
uniform graders and were not complete in the external 
testing datasets. Among three external testing datasets, 
the reported sensitivities of detecting MM were higher 
than 94.0%, whereas the specificities varied unstably 
from 85.5% to 95.9%. As for HM, the model perfor-
mance demonstrated larger gaps in those independent 
external testing datasets. Du et al. [24] conducted a sin-
gle-center study that recruited 7020 fundus images to 
develop and validate a DCNN algorithm to detect PM 
and to categorize the different MM lesions. This study 
attained an accuracy of 92.1% in the internal validation 

dataset in differentiating non-PM from PM, whereas 
the accuracies in two external testing datasets were 
78.1% and 88.2%, respectively. Lu et al. [25] developed 
DCNN models to classify the categories of MM and 
further detect the plus lesions using a dataset of 32,010 
fundus images collected from three medical centers. 
By contrast, the scale of external testing dataset which 
contained 1000 fundus images adopted in the study was 
insufficient.

At the beginning, a total of 57,148 color fundus 
images from 29,230 patients captured by a range of fun-
dus cameras in six hospitals were collected in this work. 
To ensure the accuracy and consistency of data labeling, 
all the fundus images were subjected to strict grading 
processes including image quality control, independent 
grading, and disagreement adjudication, which were 
conducted by four ophthalmologists and two specialists 
from QDEH. Rather than making binary classification 
between MM and no MM, this study further distin-
guished TF and PM from fundus photographs based 
on the META-PM criterion. This classification can help 
patients and ophthalmologists identify the progression 
stage of MM [3]. TF in those well-defined choroidal 
vessels can be observed clearly around the fovea and 
the arcade vessels is generally agreed to be the earliest 
clinical sign of MM. Meanwhile, PM with sight-threat-
ening pathological changes such as diffuse chorioretinal 
atrophy, patchy chorioretinal atrophy, macular atrophy 
and other plus lesions needs further diagnosis or treat-
ment in retinal clinics.

Fig. 2  Receiver operating characteristic (ROC) curves of three DCNN models on the Shandong Eye Hospital (SDEH) and Qingdao Eye Hospital 
(QDEH) external testing datasets. a ROC curves for PM; b ROC curves for TF. DCNN, deep convolutional neural network; PM, pathologic myopia; TF, 
tessellated fundus
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Fig. 3  Typical examples of true positive, false negative and false positive images and the corresponding CAM heatmaps. a Is a true positive of 
TF, the heatmap predominantly visualizes TF region. b, c Are true positives of PM respectively, the corresponding heatmaps highlight the atrophy 
lesions. In the row below, d is a false negative of PM which is recognized as TF by the DCNN-DS model, e, f are false positives of TF and PM 
respectively caused by other macular pathologies. The corresponding heatmaps also visualize the major interested regions of the DCNN-DS model. 
CAM, class activation map; TF, tessellated fundus; PM, pathologic myopia; DCNN-DS, dual-stream deep convolutional neural network
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Fig. 4  Results for the comparison testing dataset comparing our DCNN model with four ophthalmologists. a, b Performance of the DCNN-DS 
model and ophthalmologists for the detection of PM and TF, respectively. c Five confusion matrices for our DCNN model and ophthalmologists; 
the numbers of correct classification are listed on the diagonal. DCNN, deep convolutional neural network; PM, pathologic myopia; TF, tessellated 
fundus; DCNN-DS, dual-stream DCNN
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A recent survey [33]  reported that many image-
related factors had impacts on the performance of the 
deep learning algorithms for diabetic retinopathy, such 
as imaging conditions, dataset sources and scales, etc.  
Here, these factors were also taken into consideration for 
the intelligent analysis of MM. The fundus images used 
in this study possessed high diversity due to different 
environmental conditions and camera devices. Hence, we 
developed a novel image preprocessing method (CHDO) 
to increase uniformity of the color histogram distribu-
tion and to enhance contrast of the fundus images, but 
also might bring different degrees of color distortion in 
the processed images compared with the original ones. 
Both the original and processed images were comple-
mentary to each other and could provide useful features 
for the identification of MM. Consequently, we adopted a 
dual-stream structure based DCNN approach to extract 
features from original images and processed images 
separately and then make the final predictions based on 
the fused feature maps. In this way, it supplied a stack-
ing effect of two single-stream models and balanced the 
contribution of the two branches dynamically during the 
training stage. To validate the effectiveness of the pro-
posed DCNN-DS model, the DCNN-O and DCNN-P 
models that used the original and optimized images as 
input were built for comparison.

Two independent large-scale external testing datasets 
from SDEH and QDEH were used to evaluate DCNN 
model performance. For both datasets, the DCNN-DS 
model achieved the best performance with respect to 
overall accuracy and κ score, as well as the sensitiv-
ity, specificity, and AUC for detecting PM and TF. The 
DCNN-P model performed better than the DCNN-O 
model on most metrics. Collectively, the results demon-
strate that applying the proposed preprocessing method 
can significantly improve performance by reducing 
deviations among multi-source datasets. The DCNN-
DS model learning the fused features of the original and 
optimized images can further promote the performance 
and achieved sensitivities of more than 91.0% and 92.8%, 
specificities of more than 98.7% and 94.1%, and AUCs 
of more than 0.994 and 0.970 for identifying PM and 
TF across two independent external datasets, respec-
tively. Especially in the QDEH dataset, where the fundus 
images were captured by the Kowa camera that did not 
appear in the development dataset, we observed that the 
DCNN-DS model was also able to improve the reliabil-
ity for identifying PM distinctly. The sensitivity of PM 
was 74.5% by DCNN-O model compared with 91.0% by 
DCNN-DS model, the AUC of PM was 0.987 by DCNN-
O model compared with 0.994 by DCNN-DS model. 
The inclusion of CAM visualization that highlights the 

possible pathological regions in positive cases would aid 
in understanding the decision process of the proposed 
DCNN-DS model to some degree.

We also compared the performance of the DCNN-DS 
model with four testing ophthalmologists on a subset 
of 3000 fundus images randomly sampled from the two 
external testing datasets. These four ophthalmologists 
with varying expertise showed inconsistent understand-
ing of MM and consequently reported different results 
in the comparison testing dataset. The ophthalmologists 
performed comparably in terms of PM, which is clinically 
important. However, distinct differences in recognizing 
TF were found between the junior and senior ophthal-
mologists. In contrast, the proposed DCNN-DS model 
demonstrated close to ophthalmologist-level ability to 
detect PM and performed more reliably for TF.

Several limitations of this investigation should be con-
sidered. First, this study simplified the five categories 
of MM as described in META-PM into three and was 
unable to identify specific lesions, which would war-
rant further research. Second, the adopted MM grad-
ing criteria mainly focused on macular pathologies and 
disregarded other myopic findings that occurred in the 
peripheral retina and optic nerve. In addition to the 
basic fundus photograph examination, more advanced 
tests such as optical coherence tomography and wide-
field fundus imaging are needed [34]. Third, we con-
ducted a quality control check to exclude poor-quality 
images. However, it is inevitable that such quality issues 
will be encountered on fundus images captured in real-
world settings. Automatic image quality evaluation [35, 
36] is necessary to identify unqualified images and bring 
these to the attention of operators. Fourth, all the fun-
dus images were collected in ophthalmic clinics. Other 
realistic settings such as community disease-screening 
and health examination centers were not covered by this 
study. The population characteristics and prevalence of 
MM in these settings are quite different from those of 
ophthalmic clinics, and these factors may affect DCNN 
model performance.

Conclusions
In summary, the results of this study reveal that our pro-
posed DCNN model can achieve robust performance for 
detecting TF and PM amongst numerous fundus images 
from different imaging settings. This approach shows 
great potential for automated identification of MM at 
different severity levels in high-risk populations. Further 
research should focus on evaluating the feasibility and 
cost-effectiveness of applying our DCNN model in real-
world applications.
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