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Abstract

Background: Axial myopia is the most common type of myopia. However, due to the high incidence of myopia in
Chinese children, few studies estimating the physiological elongation of the ocular axial length (AL), which does
not cause myopia progression and differs from the non-physiological elongation of AL, have been conducted. The
purpose of our study was to construct a machine learning (ML)-based model for estimating the physiological
elongation of AL in a sample of Chinese school-aged myopic children.

Methods: In total, 1011 myopic children aged 6 to 18 years participated in this study. Cross-sectional datasets were
used to optimize the ML algorithms. The input variables included age, sex, central corneal thickness (CCT), spherical
equivalent refractive error (SER), mean K reading (K-mean), and white-to-white corneal diameter (WTW). The output
variable was AL. A 5-fold cross-validation scheme was used to randomly divide all data into 5 groups, including 4
groups used as training data and one group used as validation data. Six types of ML algorithms were implemented
in our models. The best-performing algorithm was applied to predict AL, and estimates of the physiological
elongation of AL were obtained as the partial derivatives of ALpredicted-age curves based on an unchanged SER value
with increasing age.

Results: Among the six algorithms, the robust linear regression model was the best model for predicting AL, with a
R2 value of 0.87 and relatively minimal averaged errors between the predicted AL and true AL. Based on the partial
derivatives of the ALpredicted-age curves, the estimated physiological AL elongation varied from 0.010 to 0.116 mm/
year in male subjects and 0.003 to 0.110 mm/year in female subjects and was influenced by age, SER and K-mean.
According to the model, the physiological elongation of AL linearly decreased with increasing age and was
negatively correlated with the SER and the K-mean.
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Conclusions: The physiological elongation of the AL is rarely recorded in clinical data in China. In cases of unavailable
clinical data, an ML algorithm could provide practitioners a reasonable model that can be used to estimate the
physiological elongation of AL, which is especially useful when monitoring myopia progression in orthokeratology lens
wearers.

Keywords: Myopia, Myopia progression, Machine learning, Ocular axial length, Physiological elongation,
Orthokeratology

Background
Myopia is currently the most common type of refractive
error and has become a global problem as reported by
population-based prevalence studies worldwide [1, 2]. Ac-
cording to epidemiological research, an unprecedented in-
crease in myopia has been reported, especially in East Asia
[3]. However, in recent years, the myopic population has
become increasingly younger in China because of heavy
near work and academic pressure [4]. If myopia develops
at an early age and is not controlled in a timely manner, it
is likely to develop into high myopia, which can cause a
series of comorbidities, such as cataract, glaucoma and
retinal complications, and increases the risk of severe and
irreversible vision loss [5–7].
In recent years, increasingly more parents have sought

myopia treatments with myopia control effects for their
children, such as multifocal soft contact lenses [8],
orthokeratology lenses (ortho-K lenses) [9, 10], specially
designed spectacle lenses [11], and low-dose atropine
eye drops [12]. In China, ortho-k lenses are more popu-
lar for treating myopic children because their effective-
ness against myopia progression has been proven to be
as high as 32–55% [9, 10], and they are more readily
available in optometry clinics. During follow-ups, cyclo-
plegic refraction and axial length (AL) measurements are
useful tools used to evaluate the severity of myopia pro-
gression. However, for practitioners to judge the true ex-
tent of myopia progression in an ortho-K lens wearer,
ortho-k treatment must be discontinued for at least 3–4
weeks before performing a cycloplegic refraction exam-
ination [13]. Alternatively, simply assessing the change
in AL can be performed to evaluate myopia progression.
Clinically, axial myopia is the most common type of

myopia in children [14], and myopia progression can be
approximately estimated by AL elongation. Some re-
searchers have studied how AL elongation influences
myopia progression. On average, in young children, one
diopter (D) of myopia is accompanied by an AL increase
of approximately 0.3 to 0.5 mm [15, 16]. However, this
elongation in AL does not always indicate myopia pro-
gression and could instead simply reflect physiological
AL elongation (denoted as ΔALPhy), which is mainly
compensated by a decrease in lens power in childhood
[17]. Additionally, due to the significant difference in

anterior chamber depth (ACD) among myopes, emme-
tropes, and hyperopes [18, 19], the deepening of the
ACD may play a potential role in compensating ΔALPhy.
The estimation of ΔALPhy is especially useful for practi-
tioners in evaluating myopia progression in myopic chil-
dren who underwent ortho-k treatment as refraction
examinations fail in an ortho-k lens wearer once the cor-
neal curvature (CR) has changed. Previous studies pro-
vided information regarding deducing ΔALPhy. Tideman
et al. [20] studied AL-age curves in European children
aged 6 to 9 years and found that myopic children had an
AL growth rate of 0.34 mm/year, which is more rapid
than that of emmetropes (0.19 mm/year) and hyperopes
(0.15 mm/year). Although the authors did not mention
the concept of ΔALPhy, the 5th percentile of the AL-age
curves representing those who did not develop myopia
from age 6 to adulthood indicated an AL increase of
only 0.8–0.9 mm [20]. Another study [21] conducted in
Asian children suggested that for those with persistent
emmetropes aged 7 to 12, the AL elongation over 5
years could be estimated as approximately 0.6 mm. How-
ever, the estimation of ΔALPhy in Chinese children is
particularly difficult because researchers cannot easily
find groups of persistent emmetropes or myopic chil-
dren who show no myopia progression during their
growth.
Machine learning (ML) approaches, such as random

forest, support vector machine (SVM), k-nearest neigh-
bour, and decision trees, have been used to determine
the prognosis of myopia and the diagnosis of glaucoma
and age-related macular degeneration [22–25]. Com-
pared with traditional approaches using regression-based
algorithms, ML largely reflects a correlation analysis ra-
ther than predictive analytics [26] as a correlation ana-
lysis can be used to not only analyse and summarize
complex datasets for the discovery of new knowledge
but also improve predictive accuracy by exploiting com-
plex interactions between predictors. Additionally, ML
offers a good strategy to standardize predictive models
that may address current limitations, including the linear
and homogeneous nature of predictors [27]. In addition
to its potentially improved predictive accuracy, ML can
analyse latent variables, which are unlikely to be ob-
served but may be inferred from other variables [28].
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Thus, in this study, we aimed to construct an ML-based
model for the estimation of ΔALPhy in Chinese myopic
children.

Methods
Subjects
This retrospective study consisted of participants who
visited our optometry centre due to myopia from Janu-
ary 2017 to December 2018. In total, 1016 participants
underwent a comprehensive ophthalmological examin-
ation and fulfilled the inclusion criteria, which required
a suitable age from 6 to 18 years, spherical equivalent re-
fractive error (SER) ranging from 0 to − 8.00 D, astigma-
tism no greater than 3.00 D, the absence of any ocular
diseases, and no history of orthokeratology treatment
(Fig. 1). After excluding 5 patients because of extreme
outlying observations (SER < − 8.00 D) or missing values,
1011 patients’ data were analysed. The purposes and
procedures of this study were explained to the parents
or legal guardians in detail, and they signed written in-
formed consent forms for data storage and data usage
for clinical/research purposes before the study, which
was approved by the institutional research ethics

committee of Peking University People’s Hospital and
adhered to the tenets of the Declaration of Helsinki.

Data collection and pre-processing
During the data collection process, only right-eye pa-
rameters were collected as individual sample data be-
cause of the high correlation between both eyes. The AL
data were obtained with noncontact partial-coherence
laser interferometry (IOL Master; Carl Zeiss Meditec,
Oberkochen, Germany), and the other ocular biometry
parameters were measured by a corneal topography sys-
tem (SIRIUS SYSTEM, Italy). Previous studies have
demonstrated that AL elongation is statistically and sig-
nificantly associated with age, sex, the SER (SER = spher-
ical degree + 0.5 × cylinder degree), mean K reading (K-
mean; K-mean = (flat K reading + steep K reading)/2),
central corneal thickness (CCT), and white-to-white cor-
neal diameter (WTW) [14, 29–32]. To measure AL, at
least five separate measurements were obtained per eye
and were then averaged to obtain the mean AL value.
For the other parameters, including the K-mean, ACD,
CCT and WTW, three separate measurements were per-
formed, and the average values were recorded. The

Fig. 1 Flow chart of our proposed method. a Data inclusion criteria. b Data processing procedure. c Machine learning models used to predict
the axial length and estimate the physiological axial length elongation. The best-performing prediction model was applied to predict the axial
length and estimate the physiological axial length elongation by considering the partial derivatives of ALpredicted-age curves. K-mean: mean K
reading; CCT: central corneal thickness; ACD: anterior chamber depth; WTW: white-to-white corneal diameter; SER: spherical equivalent refraction
error; AL: axial length; SVM: support vector machine; R: the coefficient of determination; MAEs: mean absolute errors; MSEs: mean squared errors;
RMSE: root mean square error; N: number of patients
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spherical, cylindrical and SER data were based on the
cycloplegic results, which were obtained 25min after the
instillation of three drops of 0.5% compound tropica-
mide eye drops (Santen Pharmaceutical Co. Ltd., Japan,
0.5% tropicamide combined with 0.5% phenylephrine)
separated by a 5-min interval. Autorefraction was per-
formed to measure the myopic refractive error in each
subject. The ocular parameters are presented as the
range (min to max) and the mean values ± standard de-
viation (mean ± SD).

Pipeline of AL prediction and estimation of ΔALPhy
The pipeline of our research is shown in Fig. 1. In this
study, to build the prediction model, the input variables
were age (in years), sex (“1” represents male, while “0”
represents female), K-mean (in diopters), ACD (in mm),
CCT (in μm), WTW (in mm) and SER (in diopters), and
the target output was the predicted AL (ALpredicted, in
mm). Six types of models were implemented in our
study based on two types of linear regression models,
three types of SVM regression models [33] and Bagged
Trees model [34]. Then, a 5-fold cross-validation [35]
scheme randomly divided all data into 5 groups, includ-
ing 4 groups (80%) used as training data and one group
(20%) used as validation data. This process was repeated
5 times such that all data were validated by this model,
which allowed better prediction of the overall sample
and prevented overfitting, and this type of pipeline was
used to evaluate the performance of different models.
During the fitting process, ACD was finally excluded
from our final model because this parameter may sub-
stantially change with an increasing age [36]. Introdu-
cing ACD into the model could lead to the problem of
collinearity and render the final model unsolvable. Fur-
thermore, including ACD did not yield better results.
Thus, the final model used to estimate AL was as
follows:

ALpredicted ¼ f Age;Kmean;CCT ;WTW ; SER; Sexð Þ
ð1Þ

To test the accuracy of this model, we classified the
patients based on different SER, K-mean and sex, and
the estimated AL error (ALerror) was defined as follows:

ALerror ¼ ALpredicted − ALtrue ð2Þ
where ALtrue is the true value of AL. To generate a spe-
cific ALpredicted-age curve with unchanged SER, the K-
mean, CCT, WTW, SER and Sex values should be fixed
to constant values, and in this study, we set CCT as
550 μm [37, 38] and WTW as 12mm for illustration [39,
40]. The SER values were set to different constant values
as − 1.00 D, − 2.00 D, − 3.00 D, − 4.00 D, − 5.00 D and −
6.00 D. The K-mean values were set as 40.00 D, 42.00 D,

44.00 D and 46.00 D. Each ALpredicted-age curve repre-
sents how AL increases with age, while SER does not
change.
Theoretically, the physiological AL elongation from

Age1 to Age2 (ΔALphy(Age2, Age1)) i.e., from 6 to 8 years,
can be calculated as follows:

ΔALphy Age2; Age1ð Þ ¼ f Age2ð Þ − f Age1ð Þ ð3Þ

To obtain a general solution, we can define the rate of
predicted AL elongation (∂ALPhy) by considering the
partial derivatives of the AL-age curves as follows:

∂ALPhy ¼ f 0Age Age;Kmean;CCT ;WTW ; SER; Sexð Þ
¼ ∂AL

∂Age

ð4Þ

Additionally, ΔALphy(Age2, Age1) could be further writ-
ten as follows:

ΔALphy Age2; Age1ð Þ ¼ f Age2ð Þ − f Age1ð Þ
¼

Z Age2

Age1
f 0Age Ageð ÞdAge ð5Þ

To explore the mechanism underlying physiological
AL elongation, the lens power was calculated using the
Bennett-Rabbetts method [41–43].

Statistical analysis
To verify the efficacy of the machine learning models, a
multiple linear regression model was also created, and
some traditional statistical methods were used for com-
parison. Paired t-tests were performed to compare ALpre-
dicted and ALtrue where the datasets were categorized into
different subgroups based on SER (0 to − 3.00 D, − 3.00
D to − 6.00 D, and < − 6.00 D), K-mean (< 42.00 D, 42.00
D to 44.00 D, and > 44.00 D), age (6–10, 11–14, and 15–
18 years) and sex (male or female), and the 95% confi-
dence intervals (CIs) were estimated for the error. Pear-
son correlation analyses among the lens power, ACD, K-
mean and age were performed. The performance of the
machine-learning prediction algorithms developed from
the training cohort was assessed using the validation co-
hort by calculating the R2 value, R value, mean absolute
error (MAE), mean squared error (MSE), and root mean
square error (RMSE), and all these linear regression
indices were calculated using the MATLAB 2018a soft-
ware package (The MathWorks, Inc., US), which was
also used for all the ML experiments. The data obtained
were analysed by the SPSS statistical software package
(Version 22.0, IBM Corp., US), and the level of statistical
significance was set at P < 0.05.
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Results and analysis
Model analysis
In total, 491 males (48.57%) and 520 females (51.43%)
were included in this study. The average age of all sub-
jects was 11.18 ± 2.49 years. The mean SER was − 3.21 ±
1.61 D and ranged from 0 to − 8.00 D. The average AL
was 24.95 ± 0.99 mm and ranged from 21.77 to 29.84
mm. The detailed information is provided in Table 1.
Significant correlations were found between the input

variables and AL, and the R2 value of the multiple linear
regression model was 0.81 as determined by the follow-
ing equation:

ALpredicted ¼ 40:31þ 0:056� Ageð Þ − 0:013� Sexð Þ
− 0:396� Kmeanð Þ − 0:353� SERð Þ P < 0:05ð Þ

ð6Þ

Table 2 shows the performance results of six ML algo-
rithms and the multiple linear regression model. The re-
sults show that most ML models had a predictive ability
that surpassed that of the traditional statistical regres-
sion model, and the two linear ML models [44] and one
SVM model achieved better performance. The relation-
ships between AL and the other variables are linearly
dependent since the ML algorithm used a linear regres-
sion, and the SVM with a linear kernel function also
achieved relatively good results. More complicated
models, such as an SVM with quadratic and cubic kernel
functions, cannot achieve good performance since such
higher-order models could generate overfitting and can-
not be applied for our application.
Our results reveal that the ML model that used the ro-

bust linear regression algorithm effectively predicted AL,
and the four performance indices achieved the best

values in this study (Table 2). As shown in Fig. 2, most
scatterplots fall along the perfect correlation regression
line (r = 0.912, P < 0.0001, R2 = 0.87), indicating an excel-
lent correlation between the predicted values and the
true values. In addition, the numbers of overestimated
and underestimated values are limited.

Prediction accuracy
In our models, when the input variables are changed,
the ALpredicted changes accordingly. As shown in Table 3,
the error and 95% CI fluctuated within very narrow
ranges. There were no significant differences between
the means of ALpredicted (24.95 ± 0.99 mm) and ALtrue
(24.95 ± 0.91 mm) of the whole sample (t = 0.007, P =
0.994), and paired t-tests showed no significant differ-
ences among the different subgroups (all P > 0.05), indi-
cating that the robust linear model achieved a high level
of precision.

Prediction results
The left panel of Fig. 3 shows the ALpredicted-age curves
based on different SER values (the SER value was fixed
as − 1.00 D, − 2.00 D, − 3.00 D, − 4.00 D, − 5.00 D and −
6.00 D) and K-means (fixed as 40.00 D, 42.00 D, 44.00 D
and 46.00 D) for both sexes. From ages 6 to 18, all ALpre-
dicted presented an increasing trend with unchanged SER
values, supporting the notion that the elongation of AL
does not always result in myopia progression. The sub-
jects with a smaller K-mean value demonstrated greater
ALpredicted as their age increased, while those with a
greater K-mean experienced smaller ALpredicted. Based on
the estimation, AL elongation was greater in males than
females in all age groups.
The right panel of Fig. 3 shows the estimations of

∂ALPhy with increasing age considering sex. A more my-
opic SER corresponded to greater ∂ALPhy. However, a
larger K-mean corresponded to smaller ∂ALPhy, and the
results showed that the mean ∂ALPhy in males was
slightly larger than that in females. For example, in 6-
year-old myopic children, the mean ∂ALPhy was pre-
dicted to be approximately 0.092 mm/year (from 0.066
mm/year to 0.116 mm/year) in males and approximately
0.085 mm/year (from 0.060mm/year to 0.110 mm/year)
in females, and these values decreased linearly to ap-
proximately 0.027 mm/year (from 0.010 mm/year to
0.045 mm/year) in males and approximately 0.021 mm/
year (from 0.003 mm/year to 0.038 mm/year) in females
among the 18-year-old young adults with myopia. More
detailed estimations of ∂ALPhy are shown in Table 4. Al-
though the estimated values of ∂ALPhy are relatively
small, an integral in Eq. (5) larger than 1mm could be
expected over a longer period.

Table 1 Basic information and ocular parameters of the myopic
subjects included in this study

Subjects Values

No. of cases 1011

Sex, male No. (%) 491 (48.57)

Sex, female No. (%) 520 (51.43)

Parameters Range Mean ± SD

Age (years) 6–18 11.18 ± 2.49

ACD (mm) 2.51–4.23 3.33 ± 0.22

CCT (um) 448–688 553 ± 0.03

SER (D) -8.00 - 0 −3.21 ± 1.61

K-mean (D) 38.26–47.99 43.33 ± 1.44

WTW (mm) 10.28–14.17 11.98 ± 0.44

AL (mm) 21.77–29.84 24.95 ± 0.99

ACD = anterior chamber depth; CCT = central corneal thickness; SER = spherical
equivalent refraction error; K-mean =mean K reading; WTW = white-to-white
corneal diameter; AL = axial length; D = diopters; SD = standard deviation
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Correlation between the input variables and subject age
The lens powers were estimated in all subjects based on
both the Modified Stenstrom [45] and Bennett-Rabbetts
methods [41–43] using Gullstrand-Emsley and Bennett-
Rabbetts eye models [46], and a third customized eye
model was applied based on customized c constants
(Table 5). Table 6 shows the lens powers calculated
using the Bennett-Rabbetts method with the customized
c constants and the changes in AL in different age
groups. The differences in the lens powers among all age
groups were statistically significant (P < 0.01).
The scatterplots shown in Fig. 4 illustrate that the lens

power and K-mean were negatively correlated with age
(lens power: r = − 0.301, P < 0.01; K-mean: r = − 0.125,

P < 0.01), while ACD was positively correlated with age
(r = 0.093, P < 0.01).

Discussion
Increased AL does not always indicate myopia progres-
sion in children. Clinically, a small amount of AL elong-
ation often results in no change in the SER in myopic
children and could be compensated by changes in the
lens power, ACD or even CR. However, CR, CCT and
WTW are relatively stable parameters with increasing
age in children [37–40]; thus, ∂ALPhy could be estimated
by considering the partial derivatives of ALpredicted-age
curves based on unchanged SER values and these input
variables, and ΔALphy(Age2, Age1) could be calculated by
Eq. (5). In clinical observations, although the amount of
AL elongation each year can be measured by an IOL
Master or A-scan ultrasound device [20], this physio-
logical AL elongation per year can hardly be recorded
due to the severe situation of myopia progression in
China in which almost all myopic children show myopia
progression every year ranging from − 0.25 D/year to as
high as − 2.00 D/year, which we called a “myopia boom”,
with an incidence of more than 95.5% among university
students and 84.6% among school children in large
Chinese cities [47–49]. This situation complicates the
identification of a group of children aged 6 to 18 years
who are non-myopic and creates difficulty in maintain-
ing complete records of these children’s physiological
AL elongation. Another concern is that in myopic chil-
dren undergoing ortho-K treatment, it is difficult for
practitioners to determine the progression of the SER
based only on elongated AL data unless the physiological
component was defined; therefore, we applied ML-based
algorithms to estimate ΔALphy(Age2, Age1).
The estimation of the physiological component of in-

creases in AL was based on the precise prediction of AL
according to biometric parameters, including age, sex,
CCT, SER, K-mean, and WTW. Then, ∂ALPhy could be
estimated from the partial derivatives of ALpredicted-age
curves based on an unchanged SER. Despite the small
sample in this study, we found a relatively high

Table 2 Performance of the machine learning algorithms and multiple linear regression model

Algorithms R2 R RMSE MAE MSE

Traditional Statistical Method Multiple Linear Regression 0.81 0.8985 0.4380 0.3455 0.1919

Machine Learning Methods Linear Regression (linear) 0.86* 0.9276* 0.3782 0.2933 0.1430

Linear Regression (Robust) 0.86* 0.9276* 0.3780* 0.2929 0.1427*

SVM (linear) 0.86* 0.9276* 0.3781 0.2928* 0.1429

SVM (Quadratic) 0.85 0.9219 0.3916 0.3013 0.1533

SVM (Cubic) 0.82 0.9055 0.4291 0.3263 0.1841

Bagged Trees 0.77 0.8775 0.4820 0.3583 0.2323

SVM = support vector machine; RMSE = root mean square error; MAE =mean absolute error; MSE =mean squared error
Best values of indices are marked by an asterisk (*)

Fig. 2 Final axial length prediction using machine learning with
baseline input variables. Scatterplot of the predicted axial length vs.
the true axial length. The solid line represents the perfect correlation
regression line. The dashed line represents the perfect line without
error prediction
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prediction accuracy for AL using the robust linear re-
gression model, which was characterized by its resistance
to deviations from the common distributional assump-
tions and facilitated improvements in inferences in the
presence of outliers [50]. Compared with conventional
models or traditional statistical methods, the robust lin-
ear regression model has a faster modelling speed and
does not require very large sample sizes and complicated
calculations. In addition, the model can run rapidly even
with a large amount of data and provide an understand-
ing and interpretation of each variable according to the
coefficient. Furthermore, the model has a higher sensi-
tivity to outliers and, thus, enables more reliable infer-
ences. Based on the simulation results above, the ML
algorithm using the robust model provided reliable re-
sults and should be considered a favourable tool for pre-
dicting both AL and the physiological elongation of AL.

ALpredicted-age curves deduced by the ML algorithm
Some studies have demonstrated that AL plays a signifi-
cant role in the determination of the refractive status
and that the loss of refractive power from the cornea
and the lens compensates for AL elongation, resulting in
a relatively stable SER with increasing age [51]. Once the
balance is disrupted, myopia develops if the rate of AL
elongation outpaces the reduction in the corneal and
lens power [52, 53]. Therefore, faster AL elongation cor-
responds to a greater possibility that a subject will be-
come more myopic at an early age.
In an epidemic study performed by Diez et al. [54], the

prevalence of myopia increased with age, while the
prevalence of hyperopia decreased. However, some sub-
jects below the first quartile showed a stabilized AL after
the age of 12 years. As deduced from their study, the
children over the age of 12 who did not show significant
myopia progression tended to have considerably flatter

AL growth curves, which coincides with our findings.
Another recent study reported similar results [20] indi-
cating that AL stabilization occurred as early as 14 years.
As indicated in Fig. 3 (left charts), the ALpredicted-age
curve obtained by the ML algorithm gradually slowed
and was essentially stable with increasing age in both
male and female subjects.
In the clinic, an ortho-K practitioner can evaluate the

severity of myopia progression without ceasing lens wear
by calculating the difference between the true AL elong-
ation (ΔALtrue) and ΔALphy(Age2, Age1). If a child had a
value of ΔALphy(Age2, Age1) equal to ΔALtrue, one can con-
clude there is no myopia progression. However, because
ortho-K lens treatment could result in the thinning of
the central corneal epithelium [55] and thickening of the
choroid [56], which may result in a “shortening” of the
AL, practitioners must perform all AL measurements
after ortho-K treatment to calculate ΔALtrue while using
the parameters sampled before the ortho-K treatment to
estimate ΔALphy(Age2, Age1). For example, consider the
case of an eight-year-old myopic child who underwent
ortho-K treatment. After 3 weeks of overnight lens wear,
an AL measurement should be performed as baseline
data, while another AL measurement should be per-
formed 1 year later. The difference between these two
measurements is ΔALtrue, while ΔALphy(9, 8) could be es-
timated by the ML model for comparison.

Factors influencing ∂ALPhy
Some association exists between CR and AL. A previous
study indicated that myopia showed a linear relationship
with the flattening of the cornea with increasing AL
[29]. However, another study showed that the CR was
not strongly related to AL [57]. As shown by our find-
ings, a flattened cornea was associated with a longer AL
under the same degree of myopia. Based on the

Table 3 The means of the predicted axial length vs. the true axial length

Groups SER (D) K-mean (D) Age (years)

0 to −
3.00

−3.00 to
− 6.00

< − 6.00 < 42.00 42.00 to
44.00

> 44.00 6–10 11–14 15–18

M F M F M F

No. of cases (%) 518
(51.2)

413
(40.9)

80 (7.9) 177
(17.5)

515
(50.9)

319
(31.6)

219
(21.7)

241
(23.8)

206
(20.4)

221
(21.8)

66 (6.5) 58 (5.8)

Predicted AL
(mm)

24.46 25.25 26.47 25.78 25.01 24.38 24.57 24.56 25.12 25.12 25.69 25.74

True AL (mm) 24.46 25.27 26.44 25.82 25.01 24.37 24.56 24.59 25.12 25.16 25.71 25.64

Error (mm) 0 −0.02 0.03 − 0.04 0 0.01 0.01 −0.03 0 −0.04 − 0.02 0.10

95% CI for error
(mm)

[−0.03,
0.03]

[−0.02,
0.06]

[− 0.07,
0.14]

[− 0.10,
0.03]

[−0.03,
0.03]

[− 0.03,
0.04]

[− 0.04,
0.05]

[−0.07,
0.02]

[− 0.05,
0.06]

[− 0.08,
0.01]

[−0.11,
0.07]

[− 0.01,
0.22]

95% CI for AL
(mm)

[23.72,
25.18]

[24.81,
26.73]

[24.50,
30.14]

[23.16,
26.47]

[24.19,
25.82]

[23.54,
25.41]

[23.60,
25.92]

[22.82,
25.20]

[23.85,
26.59]

[23.10,
25.48]

[22.83,
27.52]

[25.39,
31.34]

P value 0.457 0.234 0.420 0.372 0.933 0.371 0.774 0.991 0.951 0.328 0.962 0.256

SER = spherical equivalent refraction error; K-mean =mean K reading; AL = axial length; D = diopters; CI = confidence interval; M =male; F = female
Based on spherical equivalent refraction error (SER), mean K reading (K-mean), age and sex distribution of all samples
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prediction model, we also calculated the relationship be-
tween ∂ALPhy and the CR. Although Zadnik et al. re-
ported that the corneal power was minimally altered
during the school years, the CR of emmetropic children
was flattened by 0.06 D at the age of 14 compared with
that at age 6 [58]. Many studies have indicated no sig-
nificant change in CR during the school years, which
was the basis of the assumption of our model. In
addition, a study by Tideman et al. revealed that myopic
children had a flatter CR than both emmetropic and
hyperopic children [20]. Our investigation shows that a
steeper cornea is associated with less ∂ALPhy (Fig. 3),

suggesting that a small amount of AL elongation result-
ing in myopia progression in a subject with a steep cor-
nea may not cause SER change in a subject with a flat
cornea, who has much better tolerance for the elong-
ation of AL.
Children with myopia have a longer AL than emme-

tropes [31]. Mutti et al. [59] studied 605 children aged 6
to 14 years of different ethnicities and found that the AL
of emmetropes increased at a steady rate of approximately
0.10mm/year, while the myopic children exhibited greater
AL elongation rates (0.10 to 0.17mm/year). Similar find-
ings were found in another study involving Asian children

Fig. 3 Growth curves of predicted axial length elongation vs. age and rate of predicted axial length elongation vs. age. Left panel: Growth charts
(predicted axial length elongation vs. age). Right panel: Growth charts (rate of predicted axial length elongation vs. age) with the spherical
equivalent refraction error fixed at − 1.00 D, − 2.00 D, − 3.00 D, − 4.00 D, − 5.00 D and − 6.00 D and the mean K reading fixed at 40.00 D, 42.00 D,
44.00 D and 46.00 D. Males are indicated by dashed lines, and females are indicated by solid lines
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conducted by Wong et al., who showed an average AL
elongation rate of approximately 0.12mm/year in persist-
ent emmetropic children aged 7 to 12 years, while the
values in the persistent hyperopic and myopic children
were approximately 0.10 and 0.31mm/year, respectively
[21]. Generally, the eye growth rate in myopic children is
greater than that of emmetropic children, while the rate in
hyperopic children is lower than that in emmetropic chil-
dren. For comparison, in studies by Tideman et al. [20]
and Mutti et al., the eye growth rate per year in emmetro-
pic children could be considered the physiological elong-
ation of AL, which was slightly greater than the value of
ΔALphy(age + 1, age) estimated in our study. Similar to the fact
that different eye growth rates correlate with different re-
fractive statuses, ∂ALPhy and ΔALPhy were also influenced
by myopia severity. The ML model showed that both pre-
dicted AL elongation and ∂ALPhy were negatively corre-
lated with the SER, suggesting that a higher degree of
myopia corresponded to greater ΔALphy and that com-
pared with subjects with low myopia, in subjects with high
myopia, the increase in AL seems to have a lower effect
on SER. To date, few studies provided clear evidence

supporting this speculation. One possible explanation is
that longer AL is often associated with flatter corneas [60],
which were proven to be associated with larger ΔALphy in
our study. Given the limited evidence, further studies are
still needed to prove this inference.
Several studies in recent years have demonstrated that

AL is associated with age based on multivariate analyses
[31, 61]. Our model also proves that AL increases with
age. Other studies have shown similar findings [30, 32,
62]. As reported by Tideman et al., AL in the 95th per-
centile increased by 2.5 mm from 6 years of age to adult-
hood [20], and Diez et al. found that from 6 to 15 years
of age, AL in the 95th percentile increased by 2.93 mm
in females and 2.81 mm in males [54]. These values of
AL elongation were longer than the values estimated in
this study because these values included both the
physiological and non-physiological components. As de-
fined by the calculations, ∂ALPhy constitutes the partial
derivatives of ALpredicted-age curves under the assump-
tion of an unchanged SER, and age is the most import-
ant factor that may influence ∂ALPhy, which decreases as
a child develops into a young adult, indicating that a 6-

Table 4 Estimations of physiological elongation of axial length (in mm/year) for 6-year-old and 18-year-old males and females

SER (D)

K-mean -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 Mean

(D) Age (years)

6 18 6 18 6 18 6 18 6 18 6 18 6 18

40.00 (M) 0.089 0.024 0.094 0.028 0.100 0.032 0.105 0.037 0.111 0.041 0.116* 0.045 0.103 0.034

40.00 (F) 0.083 0.018 0.088 0.022 0.094 0.026 0.099 0.030 0.104 0.034 0.110* 0.038 0.096 0.028

42.00 (M) 0.082 0.020 0.087 0.024 0.098 0.032 0.098 0.032 0.104 0.036 0.109 0.040 0.095 0.030

42.00 (F) 0.076 0.013 0.081 0.017 0.086 0.021 0.092 0.025 0.097 0.029 0.103 0.033 0.089 0.023

44.00 (M) 0.074 0.015 0.080 0.019 0.085 0.027 0.091 0.027 0.096 0.031 0.101 0.035 0.089 0.025

44.00 (F) 0.068 0.008 0.073 0.012 0.079 0.016 0.084 0.020 0.090 0.024 0.095 0.028 0.081 0.018

46.00 (M) 0.066 0.010* 0.072 0.014 0.077 0.022 0.083 0.022 0.088 0.026 0.093 0.030 0.080 0.020

46.00 (F) 0.060 0.003* 0.065 0.007 0.071 0.011 0.076 0.015 0.081 0.019 0.087 0.023 0.073 0.013

Mean (M) 0.078 0.017 0.083 0.021 0.089 0.029 0.094 0.029 0.100 0.033 0.105 0.037 0.092 0.027

Mean (F) 0.072 0.011 0.077 0.015 0.082 0.019 0.088 0.023 0.093 0.027 0.099 0.031 0.085 0.021

The maximum and minimum values for females and males are marked by an asterisk (*). The spherical equivalent refraction error (SER) were fixed at -1.00D,
-2.00D, -3.00D, -4.00D, -5.00D and -6.00D and the mean K reading (K-mean) were fixed at 40.00D, 42.00D, 44.00D and 46.00D
SER spherical equivalent refraction error, K-mean mean K reading, M male, F female, D diopter

Table 5 Calculated lens powers using the biometry and phakometry data of the whole population

Method Symbol Eye Model c constants (mm) Average (D)

Modified Stenstrom PL,Sten Gullstrand-Emsley cSten = 2.145 20.68 ± 1.44

Bennett-Rabbetts cSten = 2.221 20.82 ± 1.45

Customized cSten = 2.875 ± 0.763 22.07 ± 1.56

Bennett-Rabbetts PL,BR Gullstrand-Emsley cBR = 2.230 22.34 ± 1.54

Bennett-Rabbetts cBR = 2.306 22.52 ± 1.56

Customized cBR = 2.891 ± 0.778 23.95 ± 1.68

n = 1011 eyes; D = diopters
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year-old child experiences much greater physiological
AL elongation than an 18-year-old individual.
The absolute values of AL differ between males and fe-

males, and our model agrees with several previous inves-
tigations. Twelker et al. reported that the AL of 6- to 12-
year-old children was elongated with increasing age and
that the AL of males was 0.5 mm longer than that of fe-
males [63]. Diez et al. also revealed that females had sig-
nificantly shorter ALs than males on average [54].
However, few studies have reported differences in
physiological AL elongation between the sexes. In our
study, as illustrated in Fig. 3, males had greater physio-
logical elongation of AL than females, suggesting that
males can tolerate more AL elongation without myopia
progression than females.

Limitations
The true values of the physiological elongation of ocular
AL per year were clinically unavailable because of severe
myopia progression in children in China. The decreasing
partial derivatives of the AL elongation curves correlated
well with clinical experience. However, the estimations
of the physiological AL elongation were based on the as-
sumption that the ocular parameters, including WTW,
CCT and K-mean, did not significantly change with in-
creasing age, and the estimations were the mean values

of populations rather than individuals. Although the fit-
ting results were excellent, the sample for ML was not
large (1011 subjects), and a large amount of the patients’
data were centralized in the middle range, yielding an
uneven distribution with a negative effect on the predic-
tion accuracy. Compared with the numbers of subjects
in the other age groups, few subjects were aged 16 to 18
years (accounting for 12.27% of the total sample). An-
other concern is the refractive status of populations. To
obtain better knowledge regarding AL growth curves
and how AL growth affects myopia progression, data
from hyperopic and emmetropic subjects should be in-
cluded in future work. Finally, the effects of genetic and
environmental factors, such as outdoor activity, near
work, or genetic backgrounds, were not included in our
final models because of difficulties in introducing these
factors as quantitative variables. Despite these limita-
tions, the ML algorithm can provide researchers with a
powerful tool to reasonably estimate ΔALPhy or ∂ALPhy
in different age groups of myopic children, which is use-
ful for evaluating myopia progression under situations in
which myopic children cannot easily undergo a cyclople-
gic refraction test, especially for ortho-K lens practi-
tioners. Additionally, a customized software package or
application could be easier for clinical practitioners to
calculate and compare ΔALPhy with ΔALtrue. Alterna-
tively, practitioners could use Eq. (6) for a simplified

Table 6 Lens power calculations in different age groups using the Bennett-Rabbetts method (customized)

Age groups (years) No. of cases (%) PL,BR Customized (D) AL (mm) P value

6–9 293 (28.98) 24.66 ± 1.57 24.53 ± 0.91 < 0.01

10–12 431 (42.63) 23.91 ± 1.63 24.87 ± 0.85 < 0.01

13–15 224 (22.16) 23.40 ± 1.53 25.36 ± 0.92 < 0.01

16–18 63 (6.23) 22.90 ± 1.63 25.92 ± 1.30 < 0.01

AL = axial length; D = diopters

Fig. 4 Scatterplots of the calculated lens powers, anterior chamber depth, mean K reading and age. a Calculated lens powers vs. age. b Anterior
chamber depths vs. age. c Mean K readings vs. age. The lens power and K-mean were negatively correlated with age, while ACD was positively
correlated with age
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process. Regardless of which model is chosen, it is im-
portant to use the AL measurement obtained after 3
weeks of ortho-K lenses wear and the AL measurements
obtained in follow up visits to calculate and compare
ΔALtrue with ΔALPhy because of changes in CR and chor-
oidal thickness.

Conclusions
The results of the present study verify that the ML algo-
rithm using a robust linear regression model was better
in predicting AL and estimating physiological AL elong-
ation in a sample of Chinese school-aged myopic chil-
dren based on only routine cross-sectional clinical data.
Our study demonstrates the possibility that the physio-
logical component of AL elongation can be estimated by
ML algorithms. Based on the model, we can easily separ-
ate the amount of the non-physiological component
from AL elongation, and myopia progression in children
who underwent ortho-K treatment could be assessed
without discontinuing lens treatment.
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