
RESEARCH Open Access

Automated diagnosis and staging of Fuchs’
endothelial cell corneal dystrophy using
deep learning
Taher Eleiwa1,2, Amr Elsawy1,3, Eyüp Özcan1,4 and Mohamed Abou Shousha1,3,5*

Abstract

Background: To describe the diagnostic performance of a deep learning algorithm in discriminating early-stage
Fuchs’ endothelial corneal dystrophy (FECD) without clinically evident corneal edema from healthy and late-stage
FECD eyes using high-definition optical coherence tomography (HD-OCT).

Methods: In this observational case-control study, 104 eyes (53 FECD eyes and 51 healthy controls) received HD-
OCT imaging (Envisu R2210, Bioptigen, Buffalo Grove, IL, USA) using a 6 mm radial scan pattern centered on the
corneal vertex. FECD was clinically categorized into early (without corneal edema) and late-stage (with corneal
edema). A total of 18,720 anterior segment optical coherence tomography (AS-OCT) images (9180 healthy; 5400
early-stage FECD; 4140 late-stage FECD) of 104 eyes (81 patients) were used to develop and validate a deep
learning classification network to differentiate early-stage FECD eyes from healthy eyes and those with clinical
edema. Using 5-fold cross-validation on the dataset containing 11,340 OCT images (63 eyes), the network was
trained with 80% of these images (3420 healthy; 3060 early-stage FECD; 2700 late-stage FECD), then tested with
20% (720 healthy; 720 early-stage FECD; 720 late-stage FECD). Thereafter, a final model was trained with the entire
dataset consisting the 11,340 images and validated with a remaining 7380 images of unseen AS-OCT scans of 41
eyes (5040 healthy; 1620 early-stage FECD 720 late-stage FECD). Visualization of learned features was done, and area
under curve (AUC), specificity, and sensitivity of the prediction outputs for healthy, early and late-stage FECD were
computed.

Results: The final model achieved an AUC of 0.997 ± 0.005 with 91% sensitivity and 97% specificity in detecting
early-FECD; an AUC of 0.974 ± 0.005 with a specificity of 92% and a sensitivity up to 100% in detecting late-stage
FECD; and an AUC of 0.998 ± 0.001 with a specificity 98% and a sensitivity of 99% in discriminating healthy corneas
from all FECD.

Conclusion: Deep learning algorithm is an accurate autonomous novel diagnostic tool of FECD with very high
sensitivity and specificity that can be used to grade FECD severity with high accuracy.
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Background
Fuchs’ endothelial corneal dystrophy (FECD) is one of
the leading indications of keratoplasty, with a 4% preva-
lence in those above the age of 40 years old in the US
[1–5]. FECD is a bilateral asymmetric disease of the cor-
neal endothelium characterized by progressive endothe-
lial cell loss with formation of excrescences known as
guttae that may result in corneal decompensation and
decreased vision [6]. The tremendous development in
the surgical and non-surgical therapeutics for FECD
makes the early diagnosis of FECD before the develop-
ment of irreversible microstructural changes crucial for
obtaining best visual results [7–15].
FECD can be diagnosed using slit lamp examination,

specular microscopy, corneal thickness measurement,
and confocal microscopy. However, these tools are in-
capable of monitoring the chronological changes of the
disease or predicting its progression, especially after
cataract extraction. Although clinical diagnosis using slit
lamp examination may be the gold standard, slit lamp
examination does not account for the presence of sub-
clinical edema, and isolated measurement of central cor-
neal thickness is not always representative of corneal
edema [16, 17]. Regarding specular and confocal micros-
copy, regional differences between guttate areas and vis-
ible cells, and potential sampling errors with limited
field of view render the corneal measurements imprecise
[18, 19]. Recently, pachymetry maps and posterior cor-
neal curvature patterns generated with Scheimpflug
tomography have been reported to facilitate the identifi-
cation of subclinical edema in cases with FECD [4].
However, at least 1 of the tomographic features of interest
was present in 7% of control eyes and 42% of the FECD
cases with no edema. Thus, it is important to consider
coexisting subtle corneal pathologies prior to interpreting
the tomographic maps [4, 5]. Currently, with the advent of
anterior segment optical coherence tomography (AS-OCT),
it has become credible to perform non-contact in vivo im-
aging to evaluate the corneal microstructure of FECD cases
at a quasi-histologic level [20–23]. Nevertheless, there is
still a barrier in deploying this technology for clinical prac-
tice due to the lack of automated reliable and accurate ana-
lysis of OCT scans [24].
Several studies have demonstrated the utility of deep

learning in the field of ophthalmology [25–31]. Deep
learning enables computers to execute direct classification
from images rather than through features recognition pre-
specified by human experts. This is accomplished by train-
ing algorithmic models on images with accompanying
labels (e.g., OCT images categorized manually for the
presence or absence of FECD), such that these models can
be used to classify new images with similar labels. The
models are neural networks that are constructed of an in-
put layer (which receives, for example, the OCT image),

followed by multiple layers of nonlinear transformations
to produce an output (e.g., FECD present or absent) [28].
So far, few studies have focused specifically on automated
detection of corneal disease using AS-OCT compared to
retinal diseases and glaucoma [32]. To the best of our
knowledge, there is no report on the use of deep learning
for diagnosing FECD. However, automated detection and
staging of FECD might be very useful to better counsel
patients about their disease and the available treatment
options (e.g., FECD screening before cataract surgery).
Therefore, the primary aim of this study was to assess the
performance of a deep learning algorithm not only for the
detection of FECD, but also to identify early-stage disease
without clinically evident edema using OCT images.

Materials and methods
Study design and participants
This study was approved by the University of Miami
Institutional Review Board (ID 20180699). The study de-
sign complied with the Health Insurance Portability and
Accountability Act (HIPAA), and the research was con-
ducted in accordance with the tenets of the Declaration
of Helsinki. All subjects provided written informed con-
sent before participation.
A total of 18,720 AS-OCT images (9180 healthy; 5400

early-stage FECD; 4140 late-stage FECD) of 104 eyes (81
patients) were collected. Patients were prospectively and
consecutively recruited from June 2018 to September
2019 at the Bascom Palmer Eye Institute. Images were
used to train and test a deep learning algorithm to auto-
matically diagnose and grade the severity of FECD in
AS-OCT images. FECD was diagnosed clinically by the
presence of guttae, with or without clinically evident
edema. Eyes were either phakic or pseudophakic with an
endocapsular posterior chamber intraocular lens implant
in the studied groups, without any history of uveitis.
Subjects were excluded from the study if they had in-

flammatory ocular diseases, ocular surface diseases, glau-
coma and systemic diseases with ocular involvement.
Patients with history of ocular surgery (except unevent-
ful cataract extraction with endocapsular intraocular lens
implantation at least 6 months prior to enrollment), con-
tact lens wear, or using topical (except artificial tears) or
systemic medications that could affect the cornea were
excluded. Slit lamp examination was done on each eye
by a masked cornea specialist in order to assign the exam-
ined cornea into either a healthy cornea or FECD group.
Furthermore, FECD eyes were clinically graded according
to the following guidelines: grade 1: non-confluent guttae;
grade 2: presence of any area of confluent guttae, but
without clinical edema; grade 3: confluent guttae with
clinical edema; grade 4: edema associated with whitening
or haze [33]. We grouped grade 1 and 2 into early-stage
FECD, and grade 3 and 4 into late-stage FECD [19, 23].
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Test methods
Anterior segment high-definition optical coherence
tomography (HD-OCT; Envisu R2210, Bioptigen,
Buffalo Grove, IL, USA) was performed for each partici-
pant, using a 6 mm radial scan pattern centered on the
corneal vertex with 180 cross-sectional images. Each
participant was asked to look at a central fixation tar-
get; the presence of a visible specular reflection in all
images of the scan confirmed an optimal centration
[34, 35]. Then, labels including names, diagnoses, age,
and sex were linked to the AS-OCT corneal images.
The patients were organized by clinical category;
healthy, early-stage, and late-stage FECD. For the train-
ing, validation, and testing procedures, all images were
anonymized. A total of 20,520 AS-OCT images were
captured from 114 eyes of 89 patients throughout the
study. After quality check and reviewing the patients’
medical records and sorting the eyes into the 3 different
groups based on the patient selection criteria stated
above, 1800 images from 10 eyes of 8 subjects were ex-
cluded, and 18,720 images from 104 eyes (81 patients)
were selected to develop and validate the model (Fig. 1).
Quality check was performed manually by 4 trained in-
dependent operators by removing images that con-
tained any of the following: decentralization, blinking,
missing parts of the endothelium or epithelial layers of
the cornea, and poor signal to noise ratio.
To simplify the creation of a deep learning model, the

deep learning model was based on visual geometry
group with 19 layers (VGG19) and transfer learning,
with parameters of the model pre-trained on ImageNet

dataset, using MATLAB 2019b (MathWorks, Natick,
MA) [36, 37]. We tested the algorithm using 5-fold
cross-validation on the dataset containing 11,340 images,
maintaining the proportion of samples of each class per
fold. This testing process trained 5 distinct algorithms
with 9180 (80%) of these images (3420 healthy; 3060
early-stage FECD 2700 late-stage FECD), each holding
off a discrete validation block of 2160 (20%) images (720
healthy; 720 early-stage FECD; 720 late-stage FECD)
[32, 38, 39]. Mean parameters were calculated from
5 test runs on the corresponding held-off data by
comparing the model’s predictions against the
ground truth as determined by cornea specialists.
The assignment toward the training and testing set
was performed randomly. Lastly, a final complete
model was trained on all 11,340 images before test-
ing on 7380 of the above-mentioned but not seen
AS-OCT scans of 41 eyes captured using the same
machine (5040 healthy; 1620 early-stage FECD; 720
late-stage FECD). The deep learning model automat-
ically computed the prediction output for each class
between 0 and 1.
To visualize the learned patterns by the network, we

plotted the activations values for different convolutional
layers, and performed an occlusion test by repeatedly re-
placing patches in an image with random values to com-
pute the probability of identifying the disease by our
network [40].

Statistical analysis
Statistical analyses were performed using SPSS soft-
ware version 26.0 (SPSS, Chicago, IL, USA) and
MATLAB 2019b (MathWorks, Natick, MA). Continu-
ous data were summarized with means and standard
deviations while dichotomous data were summarized
with proportions. Comparisons between groups were
performed using Generalized Estimating Equations
(GEE) methods to account for the correlation be-
tween two eyes of the same patient [41]. Residuals of
the fitted models were examined to assess model per-
formance and Box-Cox methods were used to identify
appropriate transformations to effect normality for
significance testing when necessary [42]. We gener-
ated area under the receiver operating characteristic
curve (AUC) as a metric to measure the accuracy of
our model, reporting related sensitivity and specificity
parameters.

Results
Participants
Our study included 104 eyes from 81 participants; the
breakdown included 53 eyes of 46 FECD patients, and
51 eyes of 35 healthy subjects of similar age and sex
(Table 1).

Fig. 1 Flow-chart illustrating the number of anterior segment optical
coherence tomography (AS-OCT) images used to develop, train and
test the deep learning algorithm
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Training, validation and testing procedures
After completing the training procedure, both training
accuracy and validation accuracy demonstrated a con-
tinuous increase and were greater than 99%. In agree-
ment with improvement of the model’s performance
during the training process, cross entropy showed a
continuous decline to a final value less than 0.01
(Fig. 2). Figure 3 demonstrates the receiver operating
characteristic curves of the five-fold cross-validation
for the model based on the image and eye-level clas-
sification accuracy. During cross-validation, the algo-
rithm scored an average area under the receiver
operating characteristic curve (AUC) of 0.95 (95% CI,
0.91–0.99), with a 91% (95% CI, 85–98%) sensitivity
and an 85% (95% CI, 77–94%) specificity for identify-
ing early FECD.
Using 7380 unseen AS-OCT images from 41 eyes, a

highly significant difference was found between the
mean prediction outputs for each class (Table 1). The
mean early-FECD prediction output was 0.86 ± 0.27 in
the early-stage FECD group as compared to 0.03 ±
0.04 in the late-stage FECD group and 0.01 ± 0.005 in
the group with healthy corneas (P < 0.001). The mean
late-FECD prediction output was 0.97 ± 0.04 in the
late-stage FECD group while it was 0.16 ± 0.29 in the
early-stage FECD group and 0.001 ± 0.0003 in the
group with healthy corneas (P < 0.001). The mean

healthy prediction output was 0.99 ± 0.02 in the
healthy corneas versus 0.00 in the late-stage FECD
group and 0.02 ± 0.03 in the group with early-stage
FECD group (P < 0.001).
Table 2 summarizes the diagnostic performance of

early-stage FECD prediction output, late-stage FECD
prediction output, and healthy cornea prediction output
at both image and eye levels. At the image level, 0.3%
was misclassified as early-stage FECD. While in early-
stage FECD, 6% was misclassified as healthy, and 13% as
late-stage FECD. From late-stage FECD eyes, 14% was
diagnosed as early-stage FECD. Nevertheless, per eye
level, only 9% early stage FECD was misclassified as late
FECD. For identifying early stage FECD at image level,
early-stage FECD prediction output had AUC of 0.984 ±
0.003 with a specificity of ≥97% and sensitivity up to
100%. Regarding late-stage FECD at image level, late-
stage FECD prediction output achieved AUC of 0.974 ±
0.005 with a specificity of 92% and a sensitivity up to
100%. For discriminating healthy corneas from early and
late-stage FECD, healthy cornea prediction output had
an AUC of 0.998 ± 0.001 with a specificity 98% and a
sensitivity of 99%. Per eye level, all the probability scores
achieved 100% sensitivities with a specificity ≥97%
(Table 2 and Fig. 4).
Figure 5 shows the visualization of discriminative

tomographic features in FECD as learned by the created

Table 1 Characteristics of study groups

Healthy
Group
(51 eyes of
35 patients)

FECD Group p value

Early-stage
(30 eyes of
26 patients)

Late-stage
(23 eyes of
20 patients)

FECD clinical grade9

Grade: N (%) of eyes
– 1: 14 (26%),

2: 16 (33%)
3: 11 (17%),
4: 12 (22%)

Number of eyes Phakic eyes 31 (60%) 27 (51%) P = 0.449

Pseudophakic eyes (PC.IOL) 20 (40%) 26 (49%)

Sex Female 24 (47%) 33 (62%) P = 0.078*

Male 27 (53%) 20 (38%)

Age (range) years 65 (50-82) 69 (50-95) P = 0.118**

Mean healthy cornea prediction output Image level 0.99 ± 0.001 0.09 ± 0.012 0.00 ± 0.00 P < 0.001**

Eye level 0.995 ± 0.003 0.018 ± 0.008 0.00 ± 0.00 P < 0.001**

Mean early-stage FECD prediction output Image level 0.004 ± 0.001 0.755 ± 0.018 0.205 ± 0.04 P < 0.001**

Eye level 0.002 ± 0.001 0.855 ± 0.083 0.033 ± 0.028 P < 0.001**

Mean late-stage FECD prediction output Image level 0.001 ± 0.00 0.145 ± 0.015 0.795 ± 0.043 P < 0.001**

Eye level 0.0001 ± 0.00 0.155 ± 0.087 0.967 ± 0.028 P < 0.001**

FECD Fuchs’ endothelial cell corneal dystrophy, PC.IOL posterior chamber intraocular lens
95% CI: 95 percent confidence interval on the difference between groups
Values are presented as median (range) for age
*P value was calculated using generalized estimating equations (GEE) with logistic link function and exchangeable correlation matrix
**P value was calculated using GEE with identity link function and exchangeable correlation matrix
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model, highlighting the pathological changes in the sub-
epithelial region and the posterior part of the cornea in-
cluding the endothelium-Descemet complex.

Discussion
FECD is a disease of the corneal endothelium with sec-
ondary changes in Descemet’s membrane, stroma, sub-
basal nerve plexus and the epithelium [43]. AS-OCT is a
proper diagnostic tool to evaluate these changes and
might help determine type and timing of intervention,
especially as newer therapeutic options enable earlier

intervention [9, 44, 45]. This technology has generated
large volumes of high-resolution corneal images, with a
huge amount of objective data, that make it an excellent
target for deep learning modalities [46–49]. However,
few studies have focused specifically on automated de-
tection of corneal disease using AS-OCT compared to
retinal diseases and glaucoma [32, 50–52]. Using 1172
AS-OCT images, Treder et al. reported a deep learning
model to automatically detect graft detachment after
Descemet membrane endothelial keratoplasty, and their
results showed a sensitivity of 98% with a specificity of

Fig. 2 Line charts showing the model’s performance [in percentage] during the training procedure. a line chart showing continuous increase in
both training accuracy and validation accuracy, and b line chart showing that cross entropy demonstrated a continuous decline to a final value
less than 0.01
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94% [32]. Using OCT images from 12,242 eyes, Yousefi
et al. reported a deep learning approach to classify the
stages of keratoconus and their results suggest that deep
learning can be applied to classifying the status and
grading the severity of keratoconic eyes [53]. To the best
of our knowledge, our study is the first to use a deep
learning approach to diagnose and stage FECD. Regard-
ing this, the aim of our study was to develop and validate
a deep learning algorithm to automatically diagnose and
grade FECD severity. Our findings showed excellent dis-
crimination between healthy, early-stage FECD and late-
stage FECD confirmed by the high accuracy, sensitivity
and specificity in diagnosing the 3 classes. Therefore,

this approach may be useful to improve the decision-
making process for FECD in the context of cataract sur-
gery and corneal transplant.
The clinical grading of FECD severity is highly per-

plexing [16], suggesting that a more objective index of
severity is required. The wide range and the diurnal vari-
ations in the normal corneal thickness obfuscates its use,
especially, to detect subtle corneal edema [16, 17, 54].
Repp et al. reported the relative corneal thickening in
FECD as a potential objective parameter to assess the
disease severity [16]. However, this can miss a focal
paracentral edema, hence, not always effective in evalu-
ating the disease severity. Research points out that mild

Fig. 3 Receiver operating characteristic (ROC) curves of the five-fold cross-validation for the model based on the image- (left column) and eye-
level (right column) classification accuracy for (a) early- and (b) late-stage Fuchs endothelial cell dystrophy (FECD) and (c) healthy eyes
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corneal thickening can exist early in the course of FECD
representing subclinical edema, signifying deterioration
of endothelial function [54], and can cause a drop in vi-
sion [55]. Hence, clinical grading should be interpreted
cautiously because this grading might not be the ideal
way to evaluate disease severity. It is also possible that
corneas with mild edema could be on the brink of re-
quiring a corneal transplant especially after cataract sur-
gery. Krachmer et al. and Louttit et al. described a
method to grade FECD using the distribution of guttae
and presence of edema [56, 57]. Their grading scales in-
clude the existence of edema as a parameter of increased
FECD severity but the Krachmer scale states that corneal
edema can only be present with extensive guttae. There-
fore, the modified scale should recategorize clinically
evident edema existing with fewer guttae as lower grade
[57]. This confusion may add to the known inter-
observer variation of subjective assessments [16] not
only for ophthalmologists evaluating the disease in clin-
ical practice, but also for researchers exploring therapies
and disease outcomes. In our study, we used a deep
learning approach to classify AS-OCT images, and
evaluate the diagnostic performance of prediction out-
puts in each class. The receiver operating characteristics
(ROC) analysis demonstrated that its performance was
comparable to diagnosis made by cornea specialists (true
classification versus the predicted class, Fig. 4). The re-
sults of this study highlight the potential utility of deep
learning models in identifying early FECD, based on one
AS-OCT scan without additional imaging modalities
(e.g., Pachymetry, specular microscopy, confocal micros-
copy) or other information. Furthermore, potential util-
ity was demonstrated for deep-learning-based detection

of FECD in 2 different scenarios, that is, from a group of
eyes with early stage of disease and from another group
of eyes with late stage of the disease. Each of these sce-
narios might be pertinent in different clinical and re-
search settings. Our recommendation for performing
Deep Learning in FECD is to look for early stages with-
out clinically evident corneal edema as this finding can
help with optimizing therapeutic decisions. Figure 6 il-
lustrates qualitative features of AS-OCT in FECD and
tomographic appearance of the corneal guttae as de-
scribed elsewhere [22, 23].
To probe the performance of the model, Fig. 5

demonstrates the learned features from AS-OCT im-
ages. The highlighted zones in the anterior and pos-
terior parts of the cornea are in agreement with the
reported microstructural changes in FECD [22, 23, 58,
59]. Besides, a manual review of the misdiagnosed eye
in the early-stage FECD group showed folds in the
endothelium/Descemet complex and a small blister
underneath the Bowman’s layer (Fig. 6-d). In this eye,
60% of the OCT frames were classified as late-stage,
while the rest was classified as early. Also, it’s note-
worthy to mention that none of the misclassified im-
ages in the late-stage FECD were in the healthy
category, while in the early disease, 6% of images
were predicted as healthy and 13% was predicted as
late FECD. Nevertheless, the overall performance of
the model was not affected at both the eye and image
levels. This observation agrees with the gradually pro-
gressive and asymmetric pathologic nature of the dis-
ease. In addition, this could explain the slightly lower
performance of the model at the image level com-
pared to per eye level performance.

Table 2 Final model sensitivity, specificity, and area under the receiver operating characteristic curve measures of prediction outputs
of early-stage FECD, late-stage FECD, and healthy cornea at both image and eye levels. All AUC P-values < 0.001 for all parameters

Image level (n = 7380 images)

Healthy cornea prediction output Early-stage FECD prediction output Late-stage FECD prediction output

AUC ± SE (95% CI) 0.998 ± 0.001 (0.997, 0.999) 0.984 ± 0.003 (0.979, 0.999) 0.974 ± 0.005 (0.964, 0.985)

Sensitivity 99% 91% 92%

Specificity 98% 97% 91%

Cutoff value 0.93 0.04 0.01

Eye level (n = 41 eyes)

Healthy cornea prediction output Early-stage FECD prediction output Late-stage FECD prediction output

AUC ± SE (95% CI) 1.0 (1, 1) 0.997 ± 0.005 (0.988, 1.0) 0.988 ± 0.017 (0.954, 1.0)

Sensitivity 100% 100% 100%

Specificity 100% 97% 98%

Cutoff value 0.49 0.03 0.67

• FECD = Fuchs’ endothelial cell corneal dystrophy; AUC = Area under the curve; SE = Standard error; 95% CI: 95% confidence interval on the difference between
groups. Specificity, sensitivity, and cutoff values are chosen to maximize total diagnostic accuracy (minimize total number of errors).
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Fig. 4 Receiver operating characteristics (ROC) graphs of (a) healthy cornea prediction output, (b) early-stage Fuchs’ endothelial corneal
dystrophy (FECD) prediction output, and (c) late-stage FECD prediction output in the corresponding class at both the image level (left column)
and eye level (right column)
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Our study is not without limitations. First, despite en-
couraging, the current results stem from a limited num-
ber of patients; however, our study demonstrates a
substantial, statistically significant ability to discriminate
between healthy and FECD eyes (Table 2). Second, the
possibility of mild edema cases could be misclassified
from early FECD to late stages as this was reliant on
clinically evident edema using slit-lamp examination.
Interestingly, the slightly higher performance of the algo-
rithm in this study at the eye level could be attributed to
the gradually progressive course of FECD. Furthermore,
the algorithm in this study was only trained and tested
with AS-OCT images captured using the same type of

OCT. Therefore, before clinical deployment, as with any
novel diagnostic tool, external validation of images from
different types of OCT machines should be conducted.
Finally, OCT imaging was limited to the central 6 mm of
the cornea as the tele-centric probe; there is reduced sig-
nal intensity in the peripheral regions [60]. This how-
ever, did not negatively impact the quality of the
training process as shown by the training and validation
curves as well as cross validation.

Conclusions
This is the first study that presents a deep learning ap-
proach to automatically discriminate healthy corneas

Fig. 5 OCT heatmap overlaid on an OCT image, highlighting the learned discriminative features in FECD. These visualizations are generated
automatically. The extracted features include the endothelial-Descemet complex (En/DM) in (a), subepithelial bullae (white arrow, b), and
subepithelial scarring (white dashed arrow, b and c)

Fig. 6 Qualitative discrimination between healthy cornea (a), early-stage Fuchs’ endothelial corneal dystrophy (FECD) (b), and late-stage FECD (c)
in AS-OCT images. Healthy and early-stage FECD do not have clinically evident edema on slit-lamp examination (SLE) as shown in the OCT
image, yet early FECD demonstrates thickening of the endothelial/Descemet complex (En/DM). Late-stage FECD shows obvious edema with
subepithelial bullae. The presets display magnified images of the posterior section of the corresponding cornea. In healthy cornea, the En/DM
was visualized as a band formed by 2 smooth regular hyper-reflective lines with a hyporeflective space in between. In FECD, the posterior line
had a wavy irregular appearance with areas of focal excrescences representing guttae (white arrows). Figure (d) shows a frame from the early
stage FECD eye that was misclassified as late-stage FECD. Note the undulations in the endothelial/Descemet complex and a small vesicle
underneath the Bowman’s layer

Eleiwa et al. Eye and Vision            (2020) 7:44 Page 9 of 11



from early and late FECD disease. Here, we report that
our deep learning algorithm can be used as a potential
objective diagnostic tool for grading the severity of
FECD. The present results may serve as a benchmark for
deep-learning-based approach to accurately distinguish
normal corneas and cases with guttae but no edema
from FECD cases, from the very mild or subclinical
edema. Our present work may help stimulate the future
development of automated OCT corneal image analysis
tools not only in the detection of early FECD but also in
monitoring disease progression and customizing thera-
peutic interventions.
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