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Abstract

rapid, non-invasive imaging modality as an adjunct.

and risk of neovascular glaucoma.

Screening, Monitoring

Background: Diabetic retinopathy (DR) is a leading cause of vision loss in adults. Currently, the standard
imaging technique to monitor and prognosticate DR and diabetic maculopathy is dye-based angiography.
With the introduction of optical coherence tomography angiography (OCTA), it may serve as a potential

Main text: Recent studies on the role of OCTA in DR include the use of vascular parameters e.g., vessel
density, intercapillary spacing, vessel diameter index, length of vessels based on skeletonised OCTA, the
total length of vessels, vascular architecture and area of the foveal avascular zone. These quantitative
measures may be able to detect changes with the severity and progress of DR for clinical research. OCTA
may also serve as a non-invasive imaging method to detect diabetic macula ischemia, which may help
predict visual prognosis. However, there are many limitations of OCTA in DR, such as difficulty in
segmentation between superficial and deep capillary plexus; and its use in diabetic macula edema where
the presence of cystic spaces may affect image results. Future applications of OCTA in the anterior segment
include detection of anterior segment ischemia and iris neovascularisation associated with proliferative DR

Conclusion: OCTA may potentially serve as a useful non-invasive imaging tool in the diagnosis and
monitoring of diabetic retinopathy and maculopathy in the future. Future studies may demonstrate how
quantitative OCTA measures may have a role in detecting early retinal changes in patients with diabetes.

Keywords: Optical coherence tomography angiography, Fluorescein angiography, Diabetic retinopathy,

Background

Diabetes is currently on the rise with 422 million of
people in the world reported to have diabetes in 2014
[1] and is a systemic disease with a multitude of compli-
cations which may involve the eyes. The most common
ocular complication is diabetic retinopathy (DR), which
may be asymptomatic in the early stages, however, disease
progression can lead to severe vision loss [2]. Diabetic
retinopathy is a leading cause of blindness in working age
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adults [3] and is estimated to affect 1 in 3 diabetic patients
[4, 5]. Diagnosis of DR is based on clinical findings and
can be divided into 2 categories - early non-proliferative
diabetic retinopathy (NPDR) and more advanced prolifer-
ative diabetic retinopathy (PDR) associated with retinal
ischemia and development of neovascularisation [6]. The
main sight-threatening complications of DR are diabetic
maculopathy, which include diabetic macular oedema
(DME) and diabetic macular ischemia (DMI) [7], and
complications from PDR - vitreous haemorrhage and
retinal detachment [8]. Digital retinal fundus image ana-
lysis has been shown to be able to detect early DR and
DME in routine DR screening [9-11]. While it has high
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sensitivity and specificity, it has been shown to have a low
negative predictive value [11].

Optical Coherence Tomography (OCT) offers a non-
invasive, rapid imaging modality that can provide im-
aging of the cross-sectional structures of the retina by
using low-coherence interferometry to capture high
resolution two dimensional images from the optical scat-
tering from different layers of the retina [12] and is an
essential tool in the detection and monitoring of DME
[13], and DMI with inner retinal thinning [14]. Optical
coherence tomography angiography (OCTA) is a novel
use of OCT to visualise the microvasculature of the ret-
ina and choroid without the need for dye injection [15].
This is performed through repeated scans at the same
location to detect the changes in OCT reflectance signal
from the flow through blood vessels [16, 17]. It allows
depth-resolved imaging of the retinal vasculature and is
an ideal approach for various retinal conditions such as
DR, retinal venous occlusion, uveitis, retinal arterial oc-
clusion and age-related macular degeneration [18, 19].

In this review, we will discuss the role of OCTA in the
evaluation and monitoring of DR, diabetic maculopathy
and the anterior segment involvement in DR.
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Main text

Literature search

We conducted a literature search via PUBMED database for
articles written in the English language until January 1,
2019, with the following medical subject headings: “OCTA,”
“OCT angiography,” “Diabetic Retinopathy,” or “Diabetes”.
All papers that used OCTA were reviewed for findings in
DR and bibliographies were hand-searched for further stud-
ies. Eighty-eight articles were identified, with 11 papers be-
ing excluded as they were either reviews, inter-instrumental
reliability study or case report/series. There was a total of 58
prospective studies, of which 17 were observational, 30 were
observational and cross-sectional, and 11 were observational
case-control study. There was a total of 19 retrospective
studies, of which 12 were observational, two were observa-
tional cross-sectional, two were case-control and three were
cross-sectional. In total, there were two multi-centred stud-
ies. The number of patients vary widely among studies. In
addition to that, we also performed an additional search via
PUBMED database with the following medical subject head-
ings: “OCTA”, “Anterior Segment”, which returned 27 arti-
cles, of which three articles were excluded as they were
either reviews or case-report.

capillary drop out and new vessels without leakage

Fig. 1 Comparison of Fluorescein Angiography and OCTA. a & b Fluorescein angiography images of a patient with proliferative diabetic
retinopathy. These FA images show patchy areas of capillary drop out and presence of neovascularizations elsewhere (NVE). ¢ & d Corresponding
OCTA images (generated via ZEISS AngioFlex) of (a) and (b) being superimposed on the FA images. The OCTA images also show areas of




Tey et al. Eye and Vision (2019) 6:37

Page 3 of 10

Fig. 2 A series of montaged OCTA in patients with diabetic retinopathy (DR). This is a series of montaged OCTA images 15mm x 15mm
taken at different segment in the right eye of a male (a-h) with DR. a Foveal avascular zone; b Choriocapillaris; ¢ Choroid; d Deep
capillary plexuses; e Outer-retina-choroid complex; f Retina; g Superficial capillary plexuses; h Vitreoretinal interface

Fluoresceine angiography and optical coherence
tomography

Fluorescein angiography (FA) is helpful in the evaluation
of the retinal vasculature and was first described in 1961
and later adopted as a standard practice in the field of
Ophthalmology [20]. Fluorescein angiography can be
used to evaluate the retinal vasculature to monitor the
progression of DR and DME [21, 22]. In FA, sodium
fluorescein is injected intravenously and with the use of
excitation and barrier filters, high contrast en face images
of the retinal vasculature can be visualised [23]. The ad-
vantage of FA lies in its ability to assess properties such as
perfusion (e.g., arm-retinal time, arterio-venous transit),
leakage and staining [24]. Flash photography and recently,
scanning laser ophthalmoscopy can be used to capture FA
images to allow visualisation of the retinal vessels in high
contrast [25, 26]. With ultra-widefield FA, the imaging
field can visualise the entire posterior segment and extend
beyond the equator of the eye, giving a field of view of up
to 200 degrees [27].

FA is a primary en face modality, and cross-sectional
segmentation of the retinal vessels is not possible [28].
Depth resolution is inferred from FA, and indocyanine
green angiography (ICGA) can be used to differentiate
choroidal from retinal perfusion as it has a larger mol-
ecule size [28].

On the other hand, OCTA has several advantages over
dye angiography in terms of acquisition speed and imaging
information (Fig. 1) [28]. OCTA images are essentially
motion-contrast images with images obtained via multiple B
scans at the same location, and information derived is based
on the backscattering of light from the changes in the inten-
sity and phase from each scan changes due to blood flow
while the neurosensory tissue will remain stationary, hence-
forth this approach eliminates the need for dye. The primary
advantage of OCTA is the ability to obtain depth-resolved
imaging of the retinal vasculature [29]. It is able to generate
the images of the superficial and deep retinal layers by
default [30] and this can be modified to further segment the
retinal vasculature and provide images of other layers such
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Fig. 3 Monitoring of treatment outcome in patients with proliferative diabetic retinopathy using OCTA. This is a series of OCTA images of a 26
years old female with proliferative diabetic retinopathy taken at baseline (@ & b), 1st month (c & d) and 6th month (e & f) post IVT treatment
(bevacizumab). OCTA is able to detect changes - NVE regression is noted

as the radial peripapillary network and choriocapillaris [28,
31, 32], which can help to visualise pathological features that
are not previously seen in 2-layers segmentation [32]. The
corresponding flow signal on OCT B-scans allows cross-
sectional localization of the vasculature in question.

There are several shortcomings for OCTA use. Firstly,
the field of view of OCTA is narrower than FA, with
most images being 3mm by 3mm [28]. The largest
scanning area that is achievable with commercially avail-
able OCTA devices is 8 mm by 8 mm which grants a
field of view of approximately 30 degrees [33]. Thus,
OCTA has poor ability in generating good quality per-
ipheral retinal images [28]. Even with the introduction

of wide-field OCTA that is able to generate images of
12 mm by 12 mm the field of view is still not comparable
to standard and ultra wide-field FA/ICGA [34, 35]. To
overcome this limitation, the montaging algorithm has
been introduced which allows the 12 mm by 12 mm im-
ages to be montaged and generate a wider field of view
[28]. This approach, however, results in an increase of
scan acquisition time, and inherent inaccuracies due to
misalignment of images [36]. Secondly, OCTA is unable
to assess dynamic characteristics of flow velocity, and
leakage which is sometimes necessary to assess various
retina pathology. Thirdly, processing of high-resolution
images can be time-consuming [37] and images
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generated via OCTA are highly susceptible to projection
artefacts due to the presence of the superficial blood
flows resulting in difficulty in interpreting the deep ret-
inal vasculatures [38]. While this can be corrected via
projection removal algorithms, this method may poten-
tially result in loss of flow information within the deeper
layer, giving a disjointed image [39]. Additionally, OCTA
images are prone to motion artefacts as well, which often
appear as a white line across the image, and can be im-
proved with motion correction function and eye-tracking al-
gorithm [40].

Morphological changes of DR on OCTA

Several morphological changes of DR can be detected by
OCTA - microaneurysms (MAs), intraretinal micro-
vascular abnormalities (IRMAs), nonperfusion areas and
neovascularizations (NVs) [41], and it is able to offer
additional information with respect to the localization of
these changes [42].

Microaneurysms are lesions that often manifest in early
DR. Thompson et al. showed that OCTA is able to pick up
MAs, not otherwise shown on a dilated clinical examin-
ation [43]. OCTA is able to localize MAs precisely [42].
There are, however, discrepancies, among studies, in
regards to the detectability of MAs between FA and OCTA
[42, 44-46]. FA has demonstrated higher sensitivity com-
pared to OCTA [47-49]. On the other hand, the majority
of MAs detected by OCTA has a corresponding finding in
FA [45]. Schwartz et al. and Ishibazawa et al. demonstrated
that OCTA can detect MAs that are otherwise not detect-
able on FA [42, 46]. Detection of MAs using OCTA, how-
ever, may be influenced by blood flow turbulence within
the MAs [50] and hence the discrepancy found among the
studies [41, 48, 51, 52]. Parravano et al. have identified a
correlation between the MAs’ reflectivity and its detectabil-
ity on OCTA — MAs that are hyper-reflective are more
likely to be detected but this may also be affected by turbu-
lent blood flow in MAs [53]. As such, it is still unclear if
OCTA is comparable to FA in terms of detecting MAs.

Intraretinal microvascular abnormalities are shunt ves-
sels due to abnormal branching or dilation of existing
capillaries within the retina that help to supply areas of
non-perfusion in DR. Visualisation of IRMAs has been
made possible with OCTA via the use of en face images
and are shown as dilated or looping vessels near the
areas of capillary loss, and has a higher detection rate on
OCTA than color fundus photography [54]. The use of
OCTA also allows identification of other features such
as the presence of intraretinal hyperreflective dots and
outpouching of the internal limiting membrane (ILM)
[55], which may be useful in detection of IRMAs.

Retinal NVs are detectable on OCTA via observation of
flow signal above the ILM [55]. OCTA can detect early
retinal NVs [49] and identify the origins and
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morphological patterns of NVs in PDR, hence allowing
classification of the lesion, offering a better understanding
of the pathophysiology and helps to guide the manage-
ment strategies [56]. OCTA is also able to detect subtle
NVs, which is difficult to differentiate from a MAs on FA
[49].

Owing to OCTA’s ability to segment the various layer
of the retina, it is able to distinguish retinal NVs from
IRMAs, which may not always be possible on FA or clin-
ical examination [44], and is of importance as very often,
retinal NVs may form next to IRMA [55]. In addition to
that, de Carlo et al. showed that retinal NVs often appear
next to retinal non-perfusion areas [55]. As such, OCTA
may be useful in helping us to differentiate NPDR from
DR, and aid us in following up and management planning.

Quantitative measures in OCTA and its application in DR

Various quantitative measures have been developed over
the years to aid research studies as well as the understand-
ing of DR pathophysiology. These quantitative measure-
ments have been shown to allow objective identification
and staging of NPDR — mild, moderate and severe, with
significant diagnostic accuracy and predictability of DR
progression [57]. To the best of our knowledge, we are
not aware of any normal data material available for the
different OCTA measurements. Several OCTA vascular
quantitative measures currently used in research and has
yet to be adopted in clinical practice have been proposed:

1) The area filled by binarized vessels (vessel area density
— VD or vessel perfusion density - PD) [57-60];

2) Vessel spacing/inter-capillary area [61];

3) Length of the blood vessel based on the
skeletonized OCTA (vascular length density — VLD
or skeleton density - SD) [57, 59];

4) Vessel diameter index (VDI) [57];

5) Total length of vessels (vessel length fraction) [62];

6) Vascular architecture and branching, (vessel
tortuosity and fractal dimension — FD) [58];

7) Area of the foveal avascular zone — FAZ [63].

Certain commercially available devices — Topcon DRI-
OCT Triton Swept-source OCT, Optovue RTVue-XR,
Heidelberg-Engineering and Zeiss Cirrus 5000-HD-OCT
enhance efficiency and reduce bias as they automatically
map VD, FAZ and PD [64, 65]. In general, VD, SD, FD
and VDI are highly reproducible among graders and
studies have found that vascular changes in DR may be
characterized by these parameters [66].

Vessel density

Vessel density is defined as the proportion of blood ves-
sel area over the total measured area [67]. Measure-
ments of VD are highly reproducible and comparisons
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of measurement should be made using the same device
[67]. This parameter varies with age and sex, and should
be taken into consideration when interpreting the results
[68]. Vessel density also changes with retinal structural
characteristics including retinal thickness and volume,
and a reduced VD would correlate with thinner macular
ganglion cell or inner plexiform layer [69]. Vessel density
decreases in both the DCP and SCP of a patient with DR
[70], as well as a diabetic patient without DR, attributing
to the fact that parafoveal capillary nonperfusion in DCP
may potentially be an early sign of DR [70-73].

Vessel density in DCP may predict DR severity and
identify patients at risk as it is able to detect retinal
vascular changes in diabetic patients without any
signs of DR [71, 74]. Vascular spacing and alterations
in VD in SCP, however, have found to have a stron-
ger correlation with the severity of DR as compared
to VD in DCP, PD in SCP or FAZ area [68, 70, 71]. Des-
pite the contradictory results, VD has shown to decrease
in both DCP and SCP in DR, and hence able to assist in
predicting treatment outcome along with following up of
patients (Fig. 2) [71, 74].

Inter-capillary spacing

Inter-capillary spacing can be detected by areas that are
not perfused and occur much earlier than VD changes
[60]. Bhanushali et al. found that large vessel spacing, es-
pecially those in the SCP, are more sensitive than VD
and FAZ area in the diagnosis of DR and it reflects the
severity of DR [74]. The extrafoveal avascular area may
help to distinguish early NPDR from healthy eyes [75].
Schottenhamml et al. found that inter-capillary space-
based algorithm is more sensitive than vascular density-
based methods to calculate early capillary drop-out or
non-perfusion areas [61]. As capillary non-perfusion area
enlarges with progression in severity of DR, the quantita-
tive analysis of retinal non-perfusion on OCTA may be
useful for early detection and monitoring of disease in
patients with diabetes and DR [76].

Vascular architecture and branching - vessel tortuosity and
fractal dimension

Vessel tortuosity is a quantitative measure from fundus
images via computer-assisted software and is defined as
the integral of the curvature square along the path of
vessel, normalized by the total path length [77]. Patients
with diabetes have been found to have increased vessel
tortuosity as compared to healthy controls and are re-
lated to mild and moderate stages of DR, suggesting that
vessel tortuosity may be an early indicator of micro-
vascular damage in the retina [78]. Vessel tortuosity may
be used to distinguish moderate to severe NPDR from
PDR, particularly in the SCP region. FAZ area and acircu-
larity correlate with vessel tortuosity in 3 mm?* and 1.5
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mm? of SCP. As this parameter increases with worsening
of NPDR and decreases in PDR, it may serve as a quantita-
tive marker to monitor the progression of DR [58].

Fractal dimension is a measure of the complexity of a
vasculature branching pattern [79] and is derived from
applying fractal analysis to OCTA images [80]. Fractal
dimension was found to be an early indicator of DR [81]
and was reduced in both SCP and DCP in patients with
diabetes compared to healthy controls, with a greater re-
duction in the DCP (82, 83].

Foveal avascular zone assessment

Johannesen et al. [84] conducted a systemic review on 8
studies investigating the changes in the FAZ in DR pa-
tients. Seven of these studies found that the FAZ in
NPDR patients will be larger as compared with the
healthy control group. Six studies on OCTA in DR
found that patients with PDR have a larger FAZ as com-
pared to the control group, and a decrease in foveal ca-
pillary perfusion in diabetics compared to controls. This
increase in FAZ with the progression of DR may indicate
increasing non-perfusion [85].

Use of OCTA in macula disease in DR

Diabetic macular ischemia is characterized by the occlu-
sion and loss of the macular capillary network or capil-
lary dropout [86]. A study showed that non-perfused
areas in DCP and reduced VD reflect the macular
photoreceptor disruption in DMI [86, 87]. In the area of
the disrupted ellipsoid zone of the photoreceptor, chor-
oidal circulation (CC) layer had greater areas of flow
void and hence alteration of CC appears to play a role in
the pathogenesis of DR and DMI [88]. Wide-field OCTA
images have shown that large arterioles situated in both
superficial and deep layers seem to be the perfusion
boundaries, which may serve as a novel anatomic factor
to predict the likelihood of non-perfusion develop-
ment (Fig. 3) [89] While FA is the gold standard for
diagnosing DMI, OCTA may be able to do so as well
[21, 86] since OCTA may provide images with higher
details with respect to macular status [86] and high
intergrader agreement [21]. Vascular quantitative mea-
sures of OCTA have also shown to be able to help
screen and monitor DMI in patients with no clinical evi-
dence of DR [90]. With further advancement in the
technology, OCTA may serve as an alternative non-
invasive method to FA to detect DMI and help predict
visual prognosis.

Diabetic macular edema refers to the accumulation of
fluid in the macula due to leaking blood vessels. While
OCT can illustrate structural changes prominently and
help in the detection of these cystic spaces [91], OCTA
has low reliability in visualizing the DCP in patients with
DME [92]. The accumulated fluid may interfere with
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imaging and segmentation capabilities of OCT as accur-
ate identification of anatomical landmarks is needed for
the complex automated process needed for correct seg-
mentation, and incorrect segmentation may affect
OCTA images [36]. DME has an inverse relationship
with OCTA signal intensity [93] because the fluid
weakens the reflected signal from deeper layers [94].
Spaide et al. reported that the rate of flow voiding does
not match with the cystic space exactly as the vessels
may be compressed by the cystic space or fluid may pool
in the region of low flow rate in the DCP [95].

Regardless, Lee et al. overcame the segmentation is-
sues by carefully adjusting the boundary between the
SCP and DCP in the eyes with severe DME, and demon-
strated that patients with DME exhibit significant dam-
age to the integrity of the DCP but not the SCP [92]. It
was also demonstrated that OCTA was able to assist us
in quantifying macular perfusion [96] and measuring the
FAZ in patients with DME [96, 97]. Using an inner seg-
mentation of the inner retinal border and an outer seg-
mentation of the retinal pigment epithelium, details of
the macula perfusion can still be obtained in the pres-
ence of DME even though it may be difficult to differen-
tiate between the SCP and DCP [40].

Anterior segment optical coherence tomography
angiography in diabetes mellitus
Healthy iris vasculature comprises a major arterial circle
that is supplied by the anterior and long posterior ciliary
arteries, and a minor arterial circle found along the border
of the pupil linked by radially oriented vessels within the
iris stroma. In severe stages of DR, new vessels are not con-
fined to the retina; these can grow around the pupillary
border, the root of iris and can penetrate the anterior
surface of the iris in severe cases. This is known as iris neo-
vascularization (NVI) or rubeosis which can lead to the
potentially sight-threatening complication of neovascular
glaucoma (NV@G) [98]. It is crucial to detect NVI in its early
stage as prompt treatment may prevent NVG. This compli-
cation is usually diagnosed clinically by gonioscopy and
although FA may help, this is not frequently the modality
of choice. A potential alternative is the use of OCTA
adapted for the anterior segment [99]. While current com-
mercially available OCTA is designed to examine the pos-
terior segment of the eye, an adapter lens can be used to
provide high-quality images of the anterior segment vascu-
lature with a good inter-observer agreement for quali-
tative measurements [100]. Early studies demonstrated
a method of obtaining OCTA images of the cornea
and limbal vasculature with great consistency [101]
and allow us to compare normal and diseased iris ves-
sels in the detection of NVI [102].

Adapting OCTA for anterior segment does come with
several downsides. Specialised anterior segment adaptive
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lenses have to be used [57, 101] and current software are
meant for imaging the posterior segment, therefore result-
ing in non-parallel segmentation and artefacts due to the
curvature of the cornea [103]. Anterior segment OCTA is
incapable of registering scans and providing localization
required for comparison of serial scans [100, 104]. In
addition, motion artefacts are common in anterior scans
due to a lack of motion correction software [105].

Furthermore, anterior segment OCTA is not able to
visualise deeper vessels in eyes with corneal opacities,
dense iris pigmentation, or vessels in thick iris tumours. It
has poor detection of vessels with minimal flow since the
flow of erythrocytes are slower in small calibre vessels and
may be below the detection threshold. Since OCTA are
optimized for the posterior segment which has mainly tra-
versing blood flows in the vessels, anterior segment vessels
with axial flow may not be detected [106].

Conclusion

OCTA may potentially serve as a good alternative in the
diagnosis and monitoring of diabetic retinopathy and
maculopathy due to its non-invasiveness nature. How-
ever, the current quantitative measures developed have
been more useful in research studies and their clinical
implications are not yet well established. At the moment,
these measures are not necessary for the diagnosis and
monitoring of DR and its associated complications as
there are existing methods that are clinically proven to
be useful. However, with more studies being done in the
near future, these quantitative OCTA measures may
have a role in detecting subclinical disease. Anterior seg-
ment OCTA, especially in the imaging of the iris, may
also be a useful biomarker in monitoring the progression
of DR and potentially prevent severe complications.
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