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Abstract 

Background  In recent years, ophthalmology has emerged as a new frontier in medical artificial intelligence (AI) 
with multi-modal AI in ophthalmology garnering significant attention across interdisciplinary research. This integra-
tion of various types and data models holds paramount importance as it enables the provision of detailed and precise 
information for diagnosing eye and vision diseases. By leveraging multi-modal ophthalmology AI techniques, clini-
cians can enhance the accuracy and efficiency of diagnoses, and thus reduce the risks associated with misdiagnosis 
and oversight while also enabling more precise management of eye and vision health. However, the widespread 
adoption of multi-modal ophthalmology poses significant challenges.

Main text  In this review, we first summarize comprehensively the concept of modalities in the field of ophthalmol-
ogy, the forms of fusion between modalities, and the progress of multi-modal ophthalmic AI technology. Finally, 
we discuss the challenges of current multi-modal AI technology applications in ophthalmology and future feasible 
research directions.

Conclusion  In the field of ophthalmic AI, evidence suggests that when utilizing multi-modal data, deep learning-
based multi-modal AI technology exhibits excellent diagnostic efficacy in assisting the diagnosis of various ophthal-
mic diseases. Particularly, in the current era marked by the proliferation of large-scale models, multi-modal techniques 
represent the most promising and advantageous solution for addressing the diagnosis of various ophthalmic diseases 
from a comprehensive perspective. However, it must be acknowledged that there are still numerous challenges 
associated with the application of multi-modal techniques in ophthalmic AI before they can be effectively employed 
in the clinical setting.
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Background
In this rapidly advancing technology landscape, artifi-
cial intelligence (AI) has emerged as a pivotal catalyst for 
societal progress. The ubiquitous adoption of AI technol-
ogies spans diverse industries with machine learning and 
deep learning (DL) standing out as the most dynamic and 
transformative branches within the field of AI. Machine 
learning relies on data-driven methodologies wherein 
autonomous task execution is achieved by extracting pat-
terns and regularities from extensive datasets.

DL [1], as a branch of machine learning, achieves effi-
cient processing and abstract representation of complex 
data by constructing multi-layer neural network mod-
els that simulate the structure and functionality of the 
human brain. This approach enables end-to-end training 
on large-scale datasets (Fig. 1).

DL has found widespread application in the field of 
ophthalmology such as blink detection [2], eye move-
ment tracking [3], diagnosis of ophthalmic diseases [4], 
and utilizing ocular images as systemic biomarkers to 
predict parameters of organs like the liver, kidneys, and 
blood [5]. Furthermore, retinal fundus image analysis 
has been employed to predict cardiovascular risk factors 
[6], forecast pathogenic genes in hereditary retinal dis-
eases [7, 8], facilitate patient care and clinical decision-
making through electronic medical record processing [9], 
advance digital education in ophthalmology [10], aid in 
the development and management of ophthalmic drugs 
[11], referral recommendation [12], and enable robotic 
surgical procedures in ophthalmology [13].

Main text
Concept of multimodality
Humans can interact with or perceive the world through 
various sensory organs, such as vision, hearing, touch, 
taste, and more. Information obtained through different 

pathways or forms is often referred to as different modal-
ities. Generally, multi-modal machine learning refers to 
the construction of machine learning models capable of 
processing information from multiple modalities. Com-
mon modalities include vision, text, and speech [14].

Compared to a single modality, multi-modal DL can 
provide the model with a greater variety of learnable 
data features. It enables the processing of different infor-
mation extractions during the neural network learning 
phase, facilitating the effective fusion of multiple modali-
ties. Figure 2 illustrates ophthalmic imaging from differ-
ent modalities.

Multi‑modal fusion
Conventional fusion strategies
Early multi-modal fusion methods are categorized into 
feature-level, decision-level, and hybrid-level fusion. 
Feature-level fusion, or early fusion, combines modality 
features into a joint representation for decision-making 
[15, 16], while decision-level fusion, or late fusion, pre-
dicts results from unimodal features and then combines 
these results [17]. Hybrid-level fusion merges the benefits 
of both approaches for improved performance [18].

Figure  3a shows that feature-level fusion methods 
extract and combine features from input modality sig-
nals to create an informative representation for decision-
making. These methods integrate features from different 
modalities to generate a robust multi-modal representa-
tion, which has been extensively studied for its potential 
to handle noise and redundancy. Various algorithms, 
including machine learning, statistical techniques like 
principle component analysis (PCA) and independent 
component analysis (ICA), and DL models [19] have been 
proposed to enhance feature-level fusion performance.

Conversely, Fig.  3b illustrates decision-level fusion 
methods, which combine decisions or classification 

Fig. 1  Paradigm comparison of machine learning and deep learning. Top row: general paradigm for machine learning. Bottom row: paradigm 
for deep learning. The example shown here is the classification of pterygium. ML, machine learning; DL, deep learning
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results from multiple input signals to improve accuracy 
and robustness. The key aspect here is the fusion rule, 
such as weighted averaging, majority voting, or Demp-
ster-Shafer theory [20]. For example, in medical image 
analysis, multiple imaging modalities like magnetic reso-
nance imaging (MRI), computed tomography (CT), and 
ultrasound provide classification decisions that are com-
bined using a fusion rule to produce a final diagnosis [21].

Feature-level fusion focuses on obtaining valid fused 
features but risks overfitting and poor cross-view dynam-
ics modeling, while decision-level fusion excels at mod-
eling view-specific dynamics and adapting to varying 
modalities but fails to fully explore dynamic interactions 
and low-level modality interactions. Hybrid-level fusion 
combines multiple fusion levels to enhance quality, accu-
racy, and robustness, as shown in Fig. 3c. It offers flexibil-
ity in designing and optimizing algorithms by allowing 
the selection and combination of different techniques 
at each level [18]. However, it is more complex and 

computationally expensive than individual fusion lev-
els due to the need to implement and integrate multiple 
techniques.

Modality interaction strategies
To alleviate the defects of conventional fusion strate-
gies, a series of modality interaction strategies have been 
developed to enhance the integration of diverse data 
sources and improve overall performance [22]. By lev-
eraging advanced techniques such as attention mecha-
nisms, cross-modal learning, and co-training, these 
strategies can better capture the complementary infor-
mation from each modality, resulting in more compre-
hensive and reliable results.

With the rise of the self-attention mechanism, cross-
attention modality interaction [23, 24] has gained 
prominence, enabling more sophisticated and effective 
integration of information across different modalities. 
This approach allows models to dynamically attend to 

Fig. 2  Presentation of typical multimodal ophthalmic imaging. The ophthalmic image-assisted examinations, arranged from left to right in the top 
row, include slit-lamp examination (a), corneal fluorescein sodium staining microscopy (b), and fundus optical coherence tomography (OCT) scan 
(c and d). In the bottom row, arranged from left to right, examinations consist of corneal epithelial thickness measurement (e), corneal OCT scan (f), 
fundus OCT angiography (OCTA) (g), ganglion cell examination (h), and wide-angle fundus color photography (i)

Fig. 3  Different modality fusion strategies. a Feature-level fusion methods; b Decision-level fusion methods; c Hybrid-level fusion
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relevant features from multiple sources, improving the 
accuracy and robustness of multi-modal tasks by lev-
eraging the strengths of each modality in a coordinated 
manner. In addition, convolution plays a potential role in 
multi-modal interaction, providing a means to capture 
local dependencies and spatial hierarchies within the data 
by viewing different modality signals as multiple channels 
and then enhancing the fusion process by efficiently inte-
grating information across convolution kernels [25, 26].

Deep neural network methods excel in data fusion 
due to their ability to leverage vast datasets for learn-
ing. Modern neural architectures also facilitate seamless 
end-to-end training encompassing both multi-modal 
representation and fusion components. They typically 
outperform systems not based on neural networks and 
can learn intricate decision boundaries that prove diffi-
cult for other methods.

Multi‑modal AI in ophthalmology
Multi‑modal AI and glaucoma
Glaucoma is one of the leading causes of irreversible 
blindness worldwide, characterized by structural damage 
and functional loss [27]. There have been many studies 
on single-modality glaucoma, such as optic cup and disc 
segmentation [28–30], glaucoma diagnosis and progres-
sion risk assessment based on fundus photography [31], 
and smartphone-based glaucoma detection systems [32]. 
Mehta et al. trained a multi-modal network using optical 
coherence tomography (OCT) and fundus photography 
clinical data from 1193 eyes of 863 healthy subjects and 
1283 eyes of 771 glaucoma patients in the UK Biobank 
database [33]. The multi-modal model, which combined 
images, demographics, and clinical features, achieved 
high performance with an area under the curve (AUC) 
of 0.97 [34]. However, there is evidence suggesting that 
the database exhibits a slight bias towards healthy volun-
teers, which may lead to a bias in the trained model when 
applied to the general population [35]. Xiong et al. used 
visual field reports and peripapillary circular OCT scans 
to construct a fusion model (FusionNet) for detecting 
glaucomatous optic neuropathy. Compared with glau-
coma experts, the fusion model achieved an AUC of 0.95 
[36]. Since the data for these studies were derived from 
hospitalized patients, further validation of the algorithm’s 
efficacy with the general population is still required. 
Huang et al. constructed the Glaucoma Real-world Pro-
gression Evaluation (GRAPE) dataset, which contains 
1115 follow-up records of 263 eyes, including visual 
fields, fundus images, intraocular pressure, OCT meas-
urements, and other multi-modal information. The team 
used a ResNet-50 model to demonstrate the feasibil-
ity of predicting visual field loss and progression, which 
can be used to evaluate glaucoma progression [37]. The 

Zhongshan Ophthalmic Center (ZOC) released the Glau-
coma Automated Multi-Modality Platform for Diagnosis 
and Progression Assessment (GAMMA), a multi-modal 
dataset consisting of 2D fundus images and 3D OCT 
images of 300 patients for glaucoma grading. The dataset 
includes three tasks: glaucoma grading using multi-modal 
data, macular fovea detection using fundus images, and 
optic cup and disc segmentation [38]. This is a relatively 
comprehensive public dataset for the assessment of glau-
coma, and it has served as the foundation for multitude 
of research endeavors. Wu et al. used GAMMA to con-
struct a fusion model that can detect normal, early glau-
coma, and advanced glaucoma [39]. Zhou et al. proposed 
a multi-modal universal architecture (MM-RAF) based 
on transformer, which uses self-attention mechanism and 
consists of three modules: bilateral contrastive alignment 
(BCA) aligns two modalities to the same semantic space 
to bridge semantic gaps; multiple instance learning rep-
resentation (MILR) integrates multiple OCT scans into 
one semantic structure and reduces the OCT branch; 
and hierarchical attention fusion uses spatial information 
to enhance cross-modal interaction. Using these three 
modules, this architecture can effectively handle cross-
modal information interaction with huge differences. 
They demonstrated that this design outperforms exist-
ing multi-modal methods in glaucoma recognition tasks, 
even on small clinical datasets [40, 41]. To address the 
problem of scarce multi-modal research data for glau-
coma, Luo et al. proposed two solutions. First, the team 
developed a pseudo-supervised generalization-enhanced 
semi-supervised learning (SSL) model that optimized the 
pseudo-label prediction strategy for unlabeled samples 
to make the best use of unlabeled data and improve the 
model’s generalization ability. The results showed that 
the model outperformed the state-of-the-art (SOTA) of 
SSL comparison models. Second, the team established 
and publicly released the Harvard Glaucoma Detection 
and Progression (Harvard GDP) dataset of 1000 patients 
with multi-modal data [42], which is the first publicly 
available dataset for glaucoma progression prediction. It 
is believed that the release of this dataset can promote 
multi-modal research on glaucoma [43]. A summary of 
recent research in multi-modal approaches for glaucoma 
is presented in Table  1. The more precise information, 
including details on data processing, data augmentation, 
loss functions, learning rates, and other such specifics, is 
also summarized in Table S1.

Multi‑modal AI and age‑related macular degeneration
Age-related macular degeneration (AMD) is considered 
a primary cause of visual impairment in individuals aged 
60 years and above. It can be classified into two types: dry 
and wet AMD [44]. Wang et  al. collected fundus color 
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photographs and OCT images of AMD patients, con-
structing a dual-stream convolutional neural network 
(DCNN) model for extracting OCT and fundus color 
photograph features. Subsequently, these features were 
concatenated and input into a classification layer for a 
three-class classification of normal fundus, dry AMD, 
and wet AMD [45]. Vaghefi et  al. recruited 75 subjects 
divided into young healthy, elderly healthy, and moder-
ate dry AMD patient groups. They collected fundus color 
photographs, OCT, and optical coherence tomography 
angiography (OCTA) imaging data from the partici-
pants. Using OCT and OCTA separately, they achieved 
diagnostic accuracies of 94% and 91%, respectively, 
and achieved a combined accuracy of 96% when utiliz-
ing multiple modalities [46]. Xu et  al. collected fundus 
color photographs and OCT images from patients and 
employed a dual-stream deep convolutional neural net-
work model based on ResNet-50 (DCNN) to identify 
AMD and polypoidal choroidal vasculopathy (PCV). 
They tested the model on 143 paired fundus and OCT 
images, achieving an accuracy of 87.4% [47]. However, 
the data imbalance between dry AMD and the remain-
ing categories may affect the actual performance of the 
model. Chen and colleagues conducted a dual-center 
retrospective study in which they collected 2006 paired 
images of infrared reflectance (IR) and OCT. They 
designed a feature fusion method based on ResNet50 for 

vertical plane feature fusion (VPFF). The results dem-
onstrated an accuracy of 0.9659 for the identification of 
dry AMD and 0.9930 for wet AMD on an external valida-
tion set, with an overall AUC of 0.9944. They posited that 
integrating the global information from IR and the local 
information from OCT significantly enhances the diag-
nostic accuracy of DL models [48]. Jin et al. conducted a 
retrospective cross-sectional multicenter study, including 
patients over 50 years old diagnosed with typical neovas-
cular AMD. They collected 462 paired OCT and OCTA 
data points and developed a feature-level fusion model 
to detect choroidal neovascularization (CNV) in AMD 
patients [49]. Incorporating fundus fluorescein angiog-
raphy (FFA) data into this study could further enhance 
the diagnosis of CNV. Patients diagnosed with exuda-
tive neovascular AMD typically undergo anti-vascular 
endothelial growth factor (anti-VEGF) drug therapy. To 
objectively assess the treatment response, Chorev and 
colleagues collected clinical characteristics and OCT 
scans from 1720 eyes of 1612 patients. They trained a 
multi-modal AI system that, compared to random selec-
tion and other standards, yielded superior results in pre-
dicting treatment response. This multi-modal AI-driven 
queue selection tool contributes to the more effective 
design of clinical trials for novel interventions and pro-
vides an objective theoretical basis for personalized care 
[50]. Song and collaborators developed a functional small 

Table 1  A summary of studies utilizing multimodal AI approaches in glaucoma

OCT = optical coherence tomography

Year Author Task Multimodal data
types

Dataset
scale

Dataset availability

2021 Mehta P et al. [34] Glaucoma
detection

Fundus images,
OCT images

1,283 eyes of 771 glaucoma 
patients

Upon request

2022 Xiong J et al. [36] Glaucomatous optic neuropa-
thy

Visual field reports, 
peripapillary circular 
OCT scans

2,463 pairs of VF and OCT 
images from 1083 patients

Private dataset

2023 Huang X et al. [37] Glaucoma management Visual field,
fundus images,
intraocular pressure,
OCT images

1,115 follow-up records of 263 
eyes

Freely available in https://​sprin​
gerna​ture.​figsh​are.​com/​colle​
ctions/​GRAPE_A_​multi​modal_​
glauc​oma_​datas​et_​of_​follo​
wup_​visual_​field_​and_​fundus_​
images_​for_​glauc​oma_​manag​
ement/​64063​19/1

2021 Wu J et al. [38] Glaucoma grading Fundus images,
OCT images

300 patients Free available after registration 
in https://​gamma.​grand​chall​
enge.​org/

2023 Wu J et al. [39] Glaucoma grading Fundus images,
OCT images

300 patients Free available after registration 
in https://​gamma.​grand-​chall​
enge.​org/

2023 Zhou Y et al. [40] Glaucoma
recognition

Fundus images,
OCT images

1,200 images Free available after registration 
in https://​ichal​lenges.​grand-​chall​
enge.​org/​iChal​lenge-​PM/

2023 Luo Y et al. [43] Glaucoma detection and pro-
gression forecasting

OCT images of glau-
coma detection 
and progression

1,000 samples from 1,000 
patients

Free download after approval

https://springernature.figshare.com/collections/GRAPE_A_multimodal_glaucoma_dataset_of_followup_visual_field_and_fundus_images_for_glaucoma_management/6406319/1
https://springernature.figshare.com/collections/GRAPE_A_multimodal_glaucoma_dataset_of_followup_visual_field_and_fundus_images_for_glaucoma_management/6406319/1
https://springernature.figshare.com/collections/GRAPE_A_multimodal_glaucoma_dataset_of_followup_visual_field_and_fundus_images_for_glaucoma_management/6406319/1
https://springernature.figshare.com/collections/GRAPE_A_multimodal_glaucoma_dataset_of_followup_visual_field_and_fundus_images_for_glaucoma_management/6406319/1
https://springernature.figshare.com/collections/GRAPE_A_multimodal_glaucoma_dataset_of_followup_visual_field_and_fundus_images_for_glaucoma_management/6406319/1
https://springernature.figshare.com/collections/GRAPE_A_multimodal_glaucoma_dataset_of_followup_visual_field_and_fundus_images_for_glaucoma_management/6406319/1
https://springernature.figshare.com/collections/GRAPE_A_multimodal_glaucoma_dataset_of_followup_visual_field_and_fundus_images_for_glaucoma_management/6406319/1
https://gamma.grandchallenge.org/
https://gamma.grandchallenge.org/
https://gamma.grand-challenge.org/
https://gamma.grand-challenge.org/
https://ichallenges.grand-challenge.org/iChallenge-PM/
https://ichallenges.grand-challenge.org/iChallenge-PM/
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animal retinal imaging system that includes polarization-
sensitive OCT (PS-OCT), fluorescence scanning laser 
ophthalmoscopy (fSLO), and sensorless adaptive optics 
(SAO). This system facilitates the visualization of patho-
logical features, and the newly developed system offers a 
more comprehensive information perspective for AMD 
detection from a multi-modal approach [51]. Moreover, 
there are several publicly available AMD multi-modal 
datasets, such as Age-Related Eye Disease Study (AREDS 
and AREDS II) [52], which provide additional opportu-
nities for research in this field. However, access to these 
datasets requires the submission of a comprehensive 
research proposal and subsequent approval. Table  2 
shows a summary of recent research in multi-modal 
approaches for AMD. The details on data processing and 
training parameters are summarized in Table S2.

Multi‑modal AI and diabetic retinopathy
Diabetic retinopathy (DR) is a common complication 
of diabetes, and if not promptly addressed, it may lead 
to visual impairment or even blindness [53]. Numer-
ous research efforts have been conducted utilizing DL 
to detect features of DR [54]. Li et al. employed genera-
tive networks to synthesize fluorescein angiography (FA) 
modal data of the fundus vessels and combined it with 
fundus color photographs. They utilized a self-supervised 
neural network to learn modality feature invariance and 
task-specific features. The constructed network, test-
ing on the Ichallenge-AMD dataset [55], Ichallenge-PM 
dataset [56], and EyePACS dataset [57], demonstrated the 
ability to acquire diagnostic information across different 
modalities, which shows effectiveness for fundus disease 
classification [58]. This study employs an unsupervised 
approach to automatically learn features for subsequent 
classification tasks. A notable limitation is the small 

sample size used for self-supervised learning. This raises 
concerns about whether the limited samples can suf-
ficiently learn effective features for the practical clinical 
classification of AMD. He et  al. proposed a modality-
specific attention network (MSAN) based on fundus 
photography and OCT images for the classification of 
fundus retinal images. Two specific attention modules 
were employed to extract features from fundus images 
and OCT images, respectively. Subsequently, through a 
modality fusion module, complementary feature infor-
mation was learned, resulting in accurate fundus image 
classification that surpassed the results of single-modal 
approaches [59]. When handling model outputs, it con-
verts the multi-label classification task into multiple 
binary classification tasks. This conversion artificially dis-
rupts the correlations between different retinal diseases, 
which is inconsistent with the clinical practice of doctors 
who consider the interconnections between various dis-
eases. This issue should be given sufficient attention.

Li et  al. utilized fundus color photographs and OCT 
images, selectively fusing these two modal features for 
multi-modal multi-instance learning (MM-MIL). This 
lightweight network was found to be suitable for learn-
ing from small-scale data. Testing on 1,206 multi-modal 
data from 1,193 eyes of 836 subjects confirmed the 
effectiveness of the proposed method in retinal disease 
recognition [60]. Hervella et  al. introduced a novel self-
supervised pre-training method that extracted both 
shared features among different modalities and unique 
features for each input modality. This comprehensive 
understanding of the input domain facilitated down-
stream tasks such as DR classification, and experimen-
tal results confirmed the efficacy of this pre-training 
approach [61] using a public multi-modal dataset [62]. 
EI Habib Daho et al. utilized ultra-widefield color fundus 

Table 2  Summary of studies utilizing multimodal AI approaches in age-related macular degeneration (AMD)

PCV = polypoidal choroidal vasculopathy; OCT = optical coherence tomography; OCTA​ = optical coherence tomography angiography; VEGF = vascular endothelial 
growth factor

Year Author Task Multimodal data types Dataset scale Dataset availability

2019 Wang W et al. [45] AMD
classification

Fundus images, OCT images 2270 images Private dataset

2020 Vaghefi E et al. [46] AMD
classification

Fundus images, OCT images, 
OCTA images

75 subjects Private dataset

2021 Xu Z et al. [47] AMD and PCV classification Fundus images, OCT images 1099 eyes Private dataset

2022 Chen M et al. [48] AMD classification Infrared reflectance
and OCT images

2006 paired images Private dataset

2022 Jin K et al. [49] Identification of choroidal neovas-
cularization in AMD

OCT images,
OCTA images

462 paired images Private dataset

2023 Chorev M et al. [50] Identification of suboptimal 
responders to anti-VEGF drugs 
from exudative neovascular AMD 
patient

Clinical characteristics and OCT 
images

1720 eyes of 1612 patients Private dataset
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photography (UWF-CFP) images and OCTA images 
to employ a fusion model combining ResNet50 and 
3D-ResNet50, incorporating a Squeeze-and-Excitation 
(SE) module [63] to enhance relevant features, achieving 
significant improvements in DR classification compared 
to single-modal approaches in a dataset of EviRed [64], 
and thus aid in early detection [65]. Li et  al. developed 
and automatically detected proliferative DR model using 
multi-modal data obtained from 3D OCT, 3D OCTA, 
and 2D fundus microscopy. They investigated the impact 
of early fusion, mid fusion, and hierarchical fusion on 
multi-modal performance, confirming that multi-modal 
models outperformed single-modal ones. Additionally, 
hierarchical fusion yielded better results compared to 
other fusion methods [66]. The main limitation of this 
study is the small sample size. These conclusions need 
to be validated on a larger clinical dataset. Bidwai et  al. 
released a multi-modal database containing 76 patients 
with 111 OCTA images and 111 fundus color photo-
graphs. This database includes three categories: non-DR, 
mild DR, and moderate DR [67, 68]. The public avail-
ability of this dataset provides more opportunities for 
research on DR. A summary of recent research in multi-
modal approaches for DR is depicted in Table  3, and 
more details on data preprocessing and model training 
can be found in Table S3.

Potential challenges and future directions
Based on DL, multi-modal ophthalmic AI applications 
have made remarkable progress, especially in glaucoma 

and fundus diseases. However, there are still many chal-
lenges that need to be addressed (Fig. 4).

Privacy and legal
The application of DL-based AI technologies has dem-
onstrated mature systems and products. However, in the 
context of medical applications, it is imperative to pri-
oritize patient privacy rights [69]. Additionally, ethical, 
legal, and other pertinent issues should be thoroughly 
addressed concerning the involvement of AI products in 
healthcare scenarios. Furthermore, the iris structure of 
adult humans exhibits a high degree of uniqueness and 
stability, which remains unchanged unless subjected to 
trauma or surgical intervention. Consequently, auto-
mated acquisition and comparison of iris images through 
computer technology enable precise identification and 
authentication of individual identity information, a pro-
cess referred to as iris recognition. Despite extensive 
research efforts dedicated to the development and opti-
mization of iris recognition technology [70, 71] in recent 
years, it is undeniable that the potential leakage of biom-
etric information may pose security risks [72].

In recent years, the emergence of federated learning 
[73] has presented significant prospects for addressing 
privacy concerns associated with medical data sources as 
well as potential legal and ethical issues. Serving as a piv-
otal technology within the realm of privacy-preserving 
computation, federated learning employs a mechanism 
wherein a central server trains a shared global model 
while keeping sensitive data stored locally within each 

Table 3  Summary of studies utilizing multimodal AI approaches in diabetic retinopathy

FFA = fundus fluorescein angiography; OCT = optical coherence tomography; OCTA​ = optical coherence tomography angiography

Year Author Task Multimodal data types Dataset scale Dataset availability

2020 Li X et al. [58] Fundus disease classifica-
tion

Fundus images, synthe-
sized FFA images

1200 images in [55]; 1200 
images in [56]; 88,702 
images in [57]

Free available after registra-
tion in https://​ichal​lenges.​
grand-​chall​enge.​org/, 
https://​www.​kaggle.​com/​
compe​titio​ns/​diabe​tic-​retin​
opathy-​detec​tion/​data

2021 He X et al. [59] Fundus disease classifica-
tion

Fundus images, OCT 
images

933 eyes of 498 patients Private dataset

2021 Li X et al. [60] Retinal disease Recognition Fundus images, OCT 
images

1,193 eyes of 836 subjects Private dataset

2022 Hervella Á et al. [61] Diabetic retinopathy clas-
sification

Fluorescein angiography 
and color retinography

59 multimodal image pairs Freely available from http://​
misp.​mui.​ac.​ir/​data/​eye-​
images.​html

2023 El Habib Daho M et al. [65] Diabetic retinopathy
classification

Ultra-widefield color 
fundus images and OCTA 
images

875 eyes from 444 patients Upon request

2023 Li Y et al. [66] Detection of proliferative 
diabetic retinopathy

OCT and OCTA images, 
fundus images

64 patients with diabetes Private dataset

2024 Bidwai P et al. [67] Diabetic classification OCTA images and fundus 
images

222 images of 76 people Upon request

https://ichallenges.grand-challenge.org/
https://ichallenges.grand-challenge.org/
https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data
https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data
https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data
http://misp.mui.ac.ir/data/eye-images.html
http://misp.mui.ac.ir/data/eye-images.html
http://misp.mui.ac.ir/data/eye-images.html


Page 8 of 13Wang et al. Eye and Vision           (2024) 11:38 

participating institution, and thus ensure the preserva-
tion of privacy without disclosure.

Dataset scale and accessibility
It is well known that large-scale public datasets such as 
ImageNet [74], PASCAL VOC [75], COCO [76], and oth-
ers play a significant role in boosting the performance of 
DL in various tasks related to natural image processing. It 
was observed that the majority of datasets utilized in the 
aforementioned studies for multi-modal ophthalmic AI 
were limited in size. Indeed, a considerable portion of the 
research work utilizes private datasets. The entire field 
of AI in ophthalmology lacks large-scale public datasets 
that can be freely provided to researchers.

To this end, further investigation is required to deter-
mine whether these smaller datasets adequately fulfill 
the requirements of real-world clinical applications. 
Additionally, more public datasets should be made open-
source to promote the continuous development of the 
field.

Data integration and standardization process
Data quality is a critical factor for the success of DL 
models, impacting not only their accuracy but also 
directly influencing the reliability and efficiency of the 
models in addressing real-world problems [77]. The 
level of data quality determines whether the model can 
capture accurate features and whether these features 
can accurately reflect the complexity of the real world. 
If errors or biases exist in the dataset, the model may 
learn these inaccuracies during the training process, 
leading to distorted predictive results in practical appli-
cations. Indeed, factors such as economic level and the 
distribution of social opportunities can influence data 
bias, ultimately impacting the decision-making capabil-
ities of algorithms [78]. Moreover, the quality of images 
in low-resource settings is another critical factor to 
consider, making it essential to obtain datasets from 
diverse communities to limit bias in data structure. To 
enhance the generalizability and fairness of models, it is 

Fig. 4  Potential challenges and future directions of multi-modal AI in ophthalmology. DL, deep learning; AI artificial intelligence.
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crucial to include more samples from various economic 
backgrounds and resource levels in the training data.

Data preprocessing techniques, such as normaliza-
tion [79] and data augmentation [80, 81], are essential 
for enhancing model performance. However, even with 
proper data preprocessing, if there is a mismatch in the 
distribution between test and training data, known as 
data distribution shift [82], the model’s performance can 
be affected. In such cases, patterns learned during train-
ing may not be directly applicable to new and different 
distribution datasets. For example, a model trained well 
on images taken during the day may not perform opti-
mally in low-light conditions due to inconsistent lighting 
distribution between the training and testing data.

To address these challenges, research groups must 
invest considerable effort in data collection, cleaning, 
labeling, and preprocessing stages. They need to ensure 
dataset diversity, handle missing values, correct errors, 
and assess the model’s generalization ability through 
techniques like cross-validation [83]. Additionally, strat-
egies such as transfer learning [84] can assist models in 
rapidly adapting to new domains, mitigating the impact 
of data distribution shift. Therefore, it is very important 
to further strengthen the cooperation mode of various 
units and establish a powerful data integration and stand-
ardization protocol.

More modals combine texts and images
Most of the research on multi-modal ophthalmology 
focuses on the interaction of information between dif-
ferent modal images, and less on the use of information 
from text. In fact, it should be noted that medical reports 
contain valuable supplementary diagnostic information 
and other contraindications, such as chief complaints, 
medical history, allergies, and so on. This portion of data 
has not been fully utilized.

Indeed, various studies have conducted in-depth inves-
tigations utilizing both text and images. Examples include 
the utilization of CT images and electronic health records 
for pulmonary metabolism detection [85], the generation 
of chest X-ray reports based on cross-modal multiscale 
feature fusion for pulmonary imaging [86], and the pre-
diction of mortality rates in the ICU through the analy-
sis of clinical records and temporal data [87]. Especially 
in the current era marked by the rise of large language 
models (LLM) [88, 89], the field of natural language pro-
cessing (NLP) has witnessed enhanced capabilities in text 
comprehension and the extraction of textual features.

Recently, scholars have endeavored to employ LLM 
in the field of ophthalmology [90, 91]. Therefore, in the 
future, more consideration can be given to using valuable 
text features extracted from patients’ rich medical history 

information combined with visual features of patient 
examinations to establish a more robust AI system.

More efficient fusion algorithms
Further research efforts are needed to explore more effec-
tively and intelligently the selection of diverse features 
from multiple modalities, thereby enhancing the algo-
rithmic level of clinical decision-making. This involves 
investigating advanced feature extraction techniques to 
ensure the comprehensive and contextually integrated 
incorporation of relevant information from various data 
sources. The pursuit of these directions will contribute 
to the development of more refined and efficient algo-
rithms, ultimately bolstering the capabilities of the clini-
cal decision-making process.

The interpretability of multi‑modal AI
Over the years, AI-assisted systems have been commonly 
referred to as black-box systems [92], a characteriza-
tion particularly pronounced in the context of DL. This 
implies that there is a lack of transparency regarding how 
DL systems make decisions and produce corresponding 
outputs. This opacity poses challenges to the widespread 
application of AI products in clinical settings [93].

However, the rapid development of interpretabil-
ity in recent years, with emerging methods expanded 
the depth of this field. Attention mechanisms, such as 
attention rollout and attention flow [94], are prevalent 
interpretative tools that analyze attention distribution 
across multiple layers. These instruments aid in com-
prehending how information is transmitted across 
layers in DL models, particularly within transformer 
architectures. By employing these techniques, we can 
better visualize and quantify the decision-making pro-
cess of models, thereby enhancing our understanding 
of model behavior. However, it is also noted by scholars 
that the direct application of attention weights in vision 
tasks has not yielded favorable outcomes [95]. Addi-
tionally, local interpretable model-agnostic explanation 
(LIME) is an interpretability technique [96] that gener-
ates synthetic data around an instance and learns a sim-
pler, interpretable model through random perturbation 
to explain the predictions of a model on an individual 
sample. Shapley additive explanations (SHAP) have 
been proven to be an effective method [97] for con-
structing interpretable models, with a primary focus 
on computing the marginal contribution of features to 
model output, where Shapley values represent the aver-
age of marginal contributions across all possible com-
binations. SHAP offers a consistent and interpretable 
means to understand the importance of features. For 
some other convolutional neural network (CNN) mod-
els, gradient-based interpretability methods are also 
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widely used. These methods include techniques oper-
ating on intermediate network layers [98] or modifica-
tions of the backpropagation rules [95]. While they are 
computationally efficient for most network architec-
tures, gradient-based explanations have yielded mixed 
results in quantitative benchmark tests. Additionally, 
empirical evidence has shown that they are not sensi-
tive to randomization of model parameters [99].

Enhancing the interpretability of AI decisions is 
essential for establishing trust among clinicians. This 
holds significant significance in the medical domain 
because the ability to comprehend and elucidate the 
decision-making process of AI is paramount for gain-
ing the confidence of healthcare professionals in their 
clinical decision-making. When physicians possess a 
comprehensive understanding of the recommenda-
tions or decisions generated by AI systems, there is a 
higher likelihood of them embracing and implementing 
this information, ultimately elevating the standard and 
safety of medical decisions.

Conclusions
DL currently serves as the cornerstone technology in 
AI within the field of ophthalmology, demonstrating 
significant advancements in research. Recent stud-
ies indicate that particularly in the auxiliary diagnosis 
of glaucoma and various fundus diseases, multi-modal 
learning exhibits notable advantages in performance 
outcomes compared to unimodal approaches. Multi-
modal learning integrates information from diverse 
imaging modalities, supplying more comprehensive 
and multi-faceted data, thereby offering more accu-
rate support for ophthalmic diagnostics. This approach 
exhibits immense potential in enhancing accuracy, 
early disease detection, and the formulation of person-
alized treatment plans. Consequently, the development 
of multi-modal DL techniques in ophthalmology holds 
vast prospects for application, providing robust tools 
to improve the efficiency and precision of ophthalmic 
healthcare. This trajectory not only anticipates driving 
innovation in the field of ophthalmology but also prom-
ises to deliver more personalized and advanced medical 
services to patients.
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