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Abstract 

Background Diabetic retinopathy (DR) and diabetic macular edema (DME) are major causes of visual impairment 
that challenge global vision health. New strategies are needed to tackle these growing global health problems, 
and the integration of artificial intelligence (AI) into ophthalmology has the potential to revolutionize DR and DME 
management to meet these challenges.

Main text This review discusses the latest AI‑driven methodologies in the context of DR and DME in terms of disease 
identification, patient‑specific disease profiling, and short‑term and long‑term management. This includes current 
screening and diagnostic systems and their real‑world implementation, lesion detection and analysis, disease progres‑
sion prediction, and treatment response models. It also highlights the technical advancements that have been made 
in these areas. Despite these advancements, there are obstacles to the widespread adoption of these technologies 
in clinical settings, including regulatory and privacy concerns, the need for extensive validation, and integration 
with existing healthcare systems. We also explore the disparity between the potential of AI models and their actual 
effectiveness in real‑world applications.

Conclusion AI has the potential to revolutionize the management of DR and DME, offering more efficient and pre‑
cise tools for healthcare professionals. However, overcoming challenges in deployment, regulatory compliance, 
and patient privacy is essential for these technologies to realize their full potential. Future research should aim 
to bridge the gap between technological innovation and clinical application, ensuring AI tools integrate seamlessly 
into healthcare workflows to enhance patient outcomes.
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Background
Diabetes mellitus (DM) and its major ocular complica-
tions of diabetic retinopathy (DR) and diabetic macular 
edema (DME) are becoming global health challenges of 
significant magnitude. Estimates by the International 
Diabetes Federation project a rise in cases of diabetes 
over the next 20  years toward a staggering 700 million 
by the year 2045 [1]. Paralleling this rise in systemic dis-
ease, a recent systematic review and meta-analysis also 
estimated increases in the global burden of DR and DME 
to 160.5 million and 28.61 million cases, respectively, by 
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2045 [2]. This dramatic rise in caseload is expected to 
pose a significant strain on healthcare resources, empha-
sizing the need for advanced solutions to effectively man-
age and address these challenges in the coming years. The 
integration of artificial intelligence (AI) into the field of 
ophthalmology, particularly in the management of DR 
and DME, marks a significant paradigm shift towards 
improving diagnostic and therapeutic outcomes for these 
diabetes-associated ocular diseases [3]. AI, encompass-
ing machine learning (ML) and its more advanced sub-
set, deep learning (DL), employs algorithms and neural 
networks to enable systems to learn from data and ana-
lyze complex patterns. This progression from ML to DL 
is yielding increasingly effective models, significantly 
improving the field’s diagnostic and analysis capabilities.

In the span of the last decade, the rise of AI in health-
care has not only brought the potential tools to address 
the significant rise in DR and DME caseload, but also 
radically impact the ways in which DR and DME can be 
diagnosed and subsequently managed and monitored. 
AI-based DR screening systems have emerged as valuable 
tools for reducing screening workloads, with numerous 
algorithms now commercially available or in clinical use. 
Additionally, AI algorithms are advancing in areas such 
as lesion analysis, disease progression prediction, and 

personalized management, offering promising results 
(Fig.  1). However, despite the significant advancements 
in AI algorithms for diagnosing and managing DR and 
DME, challenges related to real-world effectiveness, reg-
ulatory compliance, and privacy concerns persist.

The objective of this review is to provide a compre-
hensive overview of the latest AI algorithms for DR and 
DME, discuss their advancements and limitations, and 
the technical advancement that can address the challenge 
of development and deployment in real-world settings, 
assess the challenges in real-world deployment, and out-
line future directions for research and clinical implemen-
tation. Through this comprehensive analysis, we aim to 
contribute to the ongoing advancements in AI-driven 
ophthalmic care, ultimately improving outcomes for indi-
viduals with diabetes.

Main text
Methodology
To assess the current landscape of AI models related to 
DR and DME, we conducted a comprehensive literature 
review through Google Scholar and PubMed, consider-
ing studies published up to August 5, 2023. Our search 
strategy incorporated a range of keywords, including 
"diabetic retinopathy", "diabetic macular edema", "fundus 

Fig. 1 Overview of current artificial intelligence models for various applications in diabetic retinopathy and diabetic macular edema
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photograph", "optical coherence tomography", "artificial 
intelligence", "machine learning", and "deep learning". 
We limited our selection to articles published in English. 
When encountering multiple publications from the same 
study, we considered them as a single entry. Exclusions 
were made for articles that were published before 2019 
or did not present original research utilizing ML or DL 
techniques or not for DR or DME.

AI in screening and diagnosis of DR
With the growing diabetic population worldwide, the 
demand for more efficient DR screening methods is 
increasing, highlighted by their cost-effectiveness and 
the widespread recommendation for regular screening. 
Numerous studies on DR screening models using fundus 
photos have led to the transition of some from experimen-
tal development to clinical practice over the years, marking 
a significant advancement in ophthalmology [4, 5]. These 
AI systems have progressed from solely detecting DR to 
identifying other eye diseases like age-related macular 
degeneration and glaucoma. Primarily aimed at detecting 
referable diabetic retinopathy (RDR) with high accuracy, 
AI-driven models provide scalable, efficient, and precise 
screening solutions. This technological evolution signifi-
cantly surpasses traditional methods and human graders 
in efficiency, ushering in an era of automated, large-scale 
DR screening programs globally.

While these AI systems have shown promise in clini-
cal trials and received regulatory approvals, their per-
formance in real-world settings has yet to be fully 
convincing. Real-world evaluations of several state-of-
the-art AI DR screening systems have revealed inconsist-
ent performance, with sensitivities ranging from 50.98% 
to 85.90%, and specificities from 60.42% to 83.69% [6]. 
Similarly, a real-world test of Google’s AI system in Thai-
land revealed a lower specificity compared to the human 
graders [7]. A high false negative rate risks overlook-
ing diseased individuals, while a high false positive rate 
may result in unnecessary referrals, raising significant 
concern regarding the cost-effectiveness of these AI 
implementations. This performance gap may stem from 
various factors such as limited diversity and representa-
tiveness in the training datasets regarding patient demo-
graphics, image acquisition methods, variations in image 
quality outside controlled environments, and potential 
overfitting to specific data characteristics. It emphasizes 
the importance of continuously refining and adapting AI 
algorithms to enhance their applicability and effective-
ness across different populations and clinical settings.

As the field of ophthalmology continues to evolve, the 
transition from traditional imaging techniques to more 
advanced imaging modalities has been evident. Ultra-
widefield (UWF) imaging captures a greater extent of 

the peripheral retina, which may provide more prognos-
tic information and allow for more accurate DR diagno-
sis and grading. In 2021, Tang et al. trained a DL system 
using 2,861 UWF fundus photos, aiming to assess image 
gradability and detect both vision-threatening DR and 
RDR. This model demonstrated a high level of diagnos-
tic performance, consistently surpassing an area under 
the receiver operating characteristic curve (AUC) of 0.90 
across external validation datasets from three countries 
[8]. Similarly, IDx-DR (IDx Technologies, USA), which 
was primarily designed for traditional fundus pho-
tos, was found to surpass human graders in identifying 
asymptomatic RDR on UWF images [9]. Despite their 
relative expense and limited availability making them less 
convenient tools, UWF images hold potential for further 
AI research in comprehensive DR assessment.

Another innovative approach involves integrating mul-
tiple imaging modalities. While single-modality analysis 
offers valuable insights, it often provides a limited per-
spective of complex conditions. Multi-modal analysis, 
on the other hand, integrates data from various sources, 
offering a more comprehensive and potentially more 
nuanced understanding. Hua et  al. proposed an archi-
tecture to coordinate hybrid information from fundus 
photos and widefield optical coherence tomography 
angiography (OCTA). The model achieved robust per-
formance on both domestic and public datasets, with a 
quadratic weighted kappa rate of 0.902 on the small-sized 
internal dataset in DR grading, and an AUC of 0.994 in 
the Messidor dataset in detecting RDR [10]. Nagasawa 
et al. evaluated the precision of DR staging using a deep 
convolutional neural network (CNN) with 491 pairs of 
UWF fundus photos and OCTA images as input. While 
their results indicated effective DR detection using the 
combined inputs, they observed that this multi-modal 
approach did not significantly outperform the single-
modality model in terms of diagnostic accuracy [11]. 
This observation suggests that multi-modal AI tech-
niques may not always offer significantly more informa-
tion across all applications. Further research is needed 
to assess their real-world utility and to establish optimal 
implementation strategies.

AI models for DR lesion segmentation
While DR screening AI systems provide an overall diag-
nostic assessment of DR, there is also a growing need for 
a more in-depth, granular understanding of the specific 
anomalies. Different AI approaches have been deployed 
for DR lesion segmentation in the recent 20 years, from 
image processing to traditional ML and DL [12]. Most 
of the recent segmentation models are based on CNN 
which can improve generalization, automatically extract 
features, have higher robustness to variation of image 
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quality, and are more efficient and capable of multitask-
ing compared to traditional ML. In recent years, genera-
tive adversarial networks (GANs) have also been used in 
segmentation tasks for retinal lesions [13, 14]. GANs pos-
sess the unique capability to generate synthetic images 
that mimic normal fundus photos. By comparing these 
generated normal images with diseased ones, GAN-
based models can effectively identify and differentiate 
lesions [13].

Visualization and annotation of these lesions can be 
useful in clinical adoption. DR lesion segmentation sys-
tems facilitate meticulous analysis by elucidating the 
precise location, morphology, and extent of each lesion, 
and can help to quantify lesion counts in an efficient and 
automated manner. For example, it has been shown that 
quantitative analysis of DR lesions can help to better 
predict the risk of progression to proliferative DR (PDR) 
[15]. Such precision paves the way for better disease stag-
ing, personalized treatment, and objective progression 
tracking.

Integration of lesion detection into DR screening sys-
tems was observed to enhance diagnostic performance 
[16]. Dai et  al. introduced a ResNet-based lesion-aware 
sub-network, outperforming architectures like VGG 
and Inception, and employed transfer learning from a 
pre-trained DR base network. As part of a DR screen-
ing system, DeepDR, this architecture achieved AUCs 
of 0.901–0.967 for lesions detection, including microa-
neurysms, hard exudates, cotton-wool spots and hem-
orrhage, and the overall DR grading achieved an average 
AUC of 0.955 [17]. Anderson et  al. achieved improved 
performance by incorporating a segmentation model into 
a DR classification framework, with manually segment-
ing 34,075 DR lesions to develop a segmentation model, 
and then constructing a 5-step classification model [18]. 
Together with DR screening systems, these AI models 
can collectively deliver a more detailed evaluation, with 
screening systems acting as a broad initial assessment 
and lesion segmentation models providing more in-depth 
analysis of disease status.

AI models for prediction of DR progression
Beyond disease detection and classification, newer AI 
algorithms have been developed to predict the develop-
ment and progression of DR. Individual risk factors such 
as patient demographics and clinical variables are well 
known to influence the risk of DR progression [19–21]. 
Structural and functional changes in ocular investiga-
tive modalities have also shown association with DR 
progression, such as wider retinal arteriolar caliber and 
localized delays on multifocal electroretinogram that cor-
responded to specific retinal locations where DR struc-
tural changes developed [22–24].

Al-Sari et  al. used ML prediction models to predict 
the development of DR within five years with an AUC of 
0.75 using clinical variables (e.g., albuminuria, glomeru-
lar filtration rate, DR status) and an AUC of 0.79 using 
blood-derived molecular data (e.g., fatty acids, amino 
acids, sphingolipids) [25]. Several DL algorithms based 
on fundus photos have also been developed to predict 
DR progression. Arcadu et al. predicted a 2-step worsen-
ing on the Early Treatment of Diabetic Retinopathy Study 
(ETDRS) scale within one year with an AUC of 0.79 [26]. 
Bora et  al. achieved similar performance in predicting 
the risk of incident DR within two years. Furthermore, by 
incorporating clinical variables including diabetes dura-
tion and control in addition to fundus photos alone, this 
further enhanced the predictive performance [27]. More 
recently, Rom et  al. developed a DL model that outper-
formed prior fundus photos-based algorithms in predict-
ing risk of incident DR up to 3–5 years (AUC = 0.82), and 
RDR within two years (AUC = 0.81) [28]. Moreover, heat-
map analyses using explainable AI techniques revealed 
that high attention areas of DL algorithms corresponded 
to regions on baseline fundus photos that eventually 
developed DR structural changes during follow-up visits. 
These indicate the potential that DL algorithms possess 
in uncovering subtle associations in feature-rich fundus 
photos in the prediction of DR progression.

Such AI models can potentially have a significant clini-
cal impact in personalizing DR screening intervals. For 
example, patients with DM identified as low-risk for 
progression may be screened less frequently beyond the 
existing 1–2 yearly intervals, thereby freeing up much-
needed resource capacity for patients at higher risk of 
disease progression, and who may need more intensive, 
shorter surveillance intervals. This is particularly impor-
tant in the face of increasing prevalence of diabetes in 
increasingly aged populations. For instance, the Reti-
naRisk algorithm (RetinaRisk, Iceland) generates a rec-
ommended screening interval based on the individual 
predicted risk of developing sight-threatening DR. Its 
implementation in a Norwegian eye clinic over five years 
demonstrated safe and effective recommendation of vari-
able screening intervals up to 23  months, compared to 
fixed 14-monthly screening intervals [29]. This type of 
individualized DR screening approach is very promising, 
and if properly validated, can be a major tool for resource 
optimization in the face of increasing DR disease burden.

AI models for diagnosis  of DME
DME is the most common cause of visual impairment 
related to DR [30]. Timely diagnosis and accurate classi-
fication of DME are crucial to ensure appropriate treat-
ment and to prevent further deterioration of vision. 
Current gold standard diagnostic technique for DME 
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is optical coherence tomography (OCT). Recent works 
have leveraged DL methods for DME diagnosis from 
OCT scans [31, 32]. Tang et al. developed a multitask DL 
system using 73,746 OCT images from three commer-
cially available OCT devices. This system demonstrated 
AUC values of 0.937–0.965 for DME detection, and 
0.951–0.975 for center-involved DME (CI-DME) differ-
entiation across these devices [33].

Although OCT is the definitive imaging standard for 
diagnosing DME, its widespread use as a screening tool is 
hampered by factors such as high cost and limited acces-
sibility. In contrast, fundus photography is a more feasible 
option in primary care settings, owing to its widespread 
availability and cost-effectiveness. This provides a more 
accessible avenue for DME screening. Varadarajan et al. 
trained a DL model using 6039 fundus images from 4035 
patients to predict CI-DME. This model delivered an 
AUC of 0.89, achieving 85% sensitivity at 80% specific-
ity, surpassing even retinal specialist performance [34]. 
Additionally, for quantifying OCT metrics through fun-
dus photos as input, DL models showcased high accuracy 
at specific macular thickness cut-offs [35], indicating the 
potential for quantifying severity of DME as well, which 
may be useful for triage in teleophthalmology contexts.

Automated identification and quantification of DME 
biomarkers
Previous clinical research has identified myriad use-
ful DME biomarkers, including subretinal fluid (SRF), 
intraretinal fluid (IRF), pigment epithelial detachment 
(PED), hyperreflective dot (HRD), disorganization of 
inner retinal layers (DRIL), and disruptions in the exter-
nal limiting membrane (ELM), ellipsoid zone (EZ), and 
cone outer segment tip (COST) [36–39]. Though the 
clinical utility of these biomarkers has been demon-
strated in many studies, the detection and quantification 
of these biomarkers can be tedious or impractical in daily 
practice. Therefore, there is great interest in leveraging 
AI technologies for automated analysis of these biomark-
ers to inform disease prognosis and treatment decisions.

As an important feature for evaluating DME and deter-
mining treatment strategy, the retinal fluid become the 
primary area of interest for research. In contrast to ear-
lier approaches, recent studies have adopted DL archi-
tectures for the segmentation and quantification of these 
fluid areas [40]. Furthermore, the automated quantifica-
tion of the retinal fluid can also be used to predict vis-
ual acuity (VA) [41, 42]. These models offer significant 
improvements by reducing the need for subjective and 
labor-intensive manual annotations and providing more 
accurate segmentations. Unlike traditional methods that 
depend on low-level features sensitive to image quality, 
DL models learn to identify features at multiple levels 

automatically, marking a shift towards more efficient and 
unbiased research in DME.

Other biomarkers were also areas of interest [43–45]. 
Singh et  al. implemented a DL method to detect DRIL, 
with an accuracy of 88.3% [45]. Orlando et al. developed 
a DL model to quantify the photoreceptor disruption on 
B-scans [43]. Multiple algorithms were developed using 
various techniques for automated detection of HRD in 
B-scans. However, their performances exhibit signifi-
cant variability, with Dice similarity coefficient values 
ranging from 0.46 to 0.91 [46–48], which could be due 
to the relatively small size of the lesions. Further stud-
ies are required to enhance the precision of subtle lesion 
detection.

AI models for prediction of DME treatment response
The therapeutic approach of DME has evolved signifi-
cantly over the past two decades. Intravitreal anti-vas-
cular endothelial growth factor (anti-VEGF) agents have 
been established as the first-line treatment option for CI-
DME with vision loss [49, 50]. However, there still exists 
significant heterogeneity in treatment response to anti-
VEGF agents for individual patients caused by risk fac-
tors including morphological subtype, baseline VA, and 
concomitant treatments [51, 52]. This variability in treat-
ment outcomes can pose a risk to adherence and ulti-
mately, patient satisfaction.

Recent research has attempted to use AI for longitudi-
nal predictions, focusing on treatment needs and analyz-
ing both structural and functional outcomes. Cao et  al. 
developed a model to predict the treatment response 
to three consecutive anti-VEGF injections in DME. The 
model utilized DL to autonomously extract OCT bio-
markers, followed by the application of multiple classi-
fiers for response prediction. The random forest model 
showcased superior results with a sensitivity of 0.900, a 
specificity of 0.851, and an AUC of 0.923 in predicting 
good responders and poor responders, even surpassing 
the predictive ability of ophthalmologists [53]. Alryalat 
et  al. built a model composed of a modified U-net and 
an EfficientNet-B3 for a similar task, which achieved an 
accuracy of 75% for classification of treatment respond-
ers [54]. Moosavi et al. developed an automated software 
for analyzing vascular features in UWF fluorescein angi-
ography (UWFFA) images to predict treatment outcomes 
in DME. They reported AUCs of 0.82 and 0.85 for mor-
phological and tortuosity-based features, respectively, in 
discerning between treatment "rebounders" and "non-
rebounders" [55]. Xie et  al. used multiple datasets with 
OCT data combined with demographic and clinical data 
to predict 6-month post-treatment response and generate 
a recommendation to continue injection treatment. The 
algorithm achieved near-perfect structural prediction, 



Page 6 of 12Yao et al. Eye and Vision           (2024) 11:23 

and a mean absolute error (MAE) and mean squared 
error (MSE) of 0.3 to 0.4 logarithm of the minimum angle 
of resolution (logMAR) for visual outcome prediction. 
The accuracy of injection recommendations reached 70% 
[56]. Recently, Xu et al. used GANs to create post-treat-
ment OCT images based on baseline images. The MAE 
of the central macular thickness comparing the synthetic 
and actual images was 24.51 ± 18.56  μm [57]. While the 
observed difference was not negligible, this study under-
scores the potential of GANs for structural predictions 
in ophthalmology. Such AI models, when integrated into 
clinical practice, could enable ophthalmologists to design 
more personalized treatment regimens tailored to each 
patient’s unique retinal characteristics. This potentially 
improves not only the safety of therapy but also enhances 
the quality of life and creates potential cost savings for 
patients.

Prediction of visual function in DR and DME
Recent studies have been exploring the use of fundus 
images to assess visual function [58–60]. Kim et al. devel-
oped an ML-based VA measurement model using fun-
dus photos from 79,798 patients with different retinal 
diseases, including DR. Images were divided into four 
VA categories, and the model demonstrated an average 
accuracy of 82.4% in estimating these four VA levels [58]. 
Recently, Paul et al. employed various AI architectures for 
predicting best-corrected visual acuity (BCVA) using fun-
dus photos in CI-DME patients. The ResNet50 architec-
ture showed the ability to estimate BCVA with an MAE 
of 9.66 letters, which is within two lines on the ETDRS 
chart. Additionally, the study observed that incorporat-
ing additional clinical visit data could potentially improve 
predictive accuracy, especially in the subset of patients 
with lower BCVA [59]. This approach could offer VA esti-
mation for patients unable to participate in chart-based 
assessments. Moreover, estimating visual function with 
fundus photos in DR and DME appears promising, given 
the critical role of BCVA in guiding treatment decisions. 
However, the field is currently limited by sparse research, 
raising questions about the generalizability of findings. 
Consequently, further investigation is essential to vali-
date and expand our understanding in this area.

Telemedicine and remote monitoring
Telemedicine utilizes digital technology to provide 
healthcare services from distance, allowing patients to 
access medical consultations and treatments without vis-
iting a healthcare facility. This method greatly improves 
medical care accessibility, particularly in underserved 
and rural regions, by overcoming geographic barri-
ers between patients and providers [61]. The integra-
tion of AI-based DR screening systems further amplifies 

telemedicine’s potential, offering more effective and effi-
cient diagnostic capabilities. The current applications of 
screening for DR and DME in the primary care setting 
are based largely on the analysis of large data throughput 
collected via conventional retinal fundus or UWF cam-
eras [62]. These approaches are potentially limited in 
scalability by resource issues such as high cost or short-
age of trained personnel either to acquire images or to 
grade them, especially in remote areas.

The development of hand-held cameras and smart-
phone-based cameras opened up greater means of acces-
sibility for fundus screening, by overcoming geographical 
barriers and providing patients in remote or underserved 
areas access to specialized care [63]. However, the poten-
tial for decreased image resolution and quality can be a 
concern [64].

Efforts have been undertaken to employ hand-held 
camera-based and smartphone-based fundus images in 
the field of telemedicine. In a comparative analysis, Ruan 
et al. evaluated the proficiency of a DL algorithm in iden-
tifying RDR from 50° fundus images taken via hand-held 
cameras against those obtained from traditional desk-
top cameras. While hand-held devices produced images 
of superior clarity that were effectively interpreted by 
human graders, the AI analysis revealed a need for fur-
ther refinement [65]. Similarly, Rogers et  al. reported 
reduced accuracy in DR detection using hand-held cam-
era images with the Pegasus AI system (Visulytix Ltd., 
UK) [66]. In contrast, the SMART India Study Group 
described a DL model in detecting RDR using 2-field fun-
dus photos acquired by nonmydriatic hand-held cameras 
from 16,247 eyes. The system achieved a high perfor-
mance in detecting RDR, with an AUC of 0.98 and 0.99 
with one-field and two-field inputs, respectively [67]. 
Significantly, they found that variations in dilation states 
and image gradability across studies could influence the 
results [65, 67, 68]. In a recent study, the SELENA + algo-
rithm (EyRIS Pte Ltd, Singapore), which was developed 
using traditional fundus photos, was integrated into a 
hand-held fundus camera and paralleled the results of 
conventional retina specialist evaluations, reinforcing its 
precision in DR detection in a different use setting [69]. 
As for smartphone-based images, a study utilizing a DL 
algorithm previously trained on 92,364 traditional fun-
dus images was subsequently run on 103 smartphone-
captured images of varying qualities at 1080p resolution. 
It found that the algorithm achieved 89.0% sensitivity 
(95% CI: 81%–100%) and 83% specificity (95% CI: 77%–
89%) for the detection of RDR. This was in spite of the 
presence of multiple glares, smudge and blockage arti-
facts that at times even required cropping of the retinal 
images prior to analysis [70]. Sosale et  al. evaluated an 
offline DL-based DR screening software Medios (Medios 
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technology, Singapore) in a clinical setting in India, 
which demonstrated promising results. This highlights 
its significant potential for deployment in areas with 
limited internet resources [71]. These results are encour-
aging, but more studies, especially based in real-world 
settings are required to further test this proof of concept. 
However, if robustly validated, they could be an impor-
tant tool for increasing access to DR screening in under-
resourced healthcare settings, as a means of convenience 
and cost-effectiveness.

In addition, home-based imaging devices serve as pow-
erful tools for remote monitoring. These devices offer 
increased accessibility, especially for patients in remote 
areas, and provide the convenience of conducting regu-
lar scans from home, which is particularly beneficial 
for elderly or mobility-impaired patients. Home-based 
monitoring facilitates early detection and intervention, 
potentially preventing disease progression. Furthermore, 
it contributes to reduced healthcare costs by minimiz-
ing frequent clinic visits and integrates seamlessly with 
telemedicine, enhancing patient engagement and com-
pliance. A home OCT system, Notal Vision Home OCT 
(NVHO, Notal Vision Inc, Manassas, VA, USA), was 
validated for daily self-imaging in patients with neo-
vascular age-related macular degeneration [72]. Fifteen 
participants who were under anti-VEGF treatment per-
formed daily self-imaging at home using NVHO for three 
months. Images were uploaded to the cloud and analyzed 
by its DL-based analyzer. Results indicated good agree-
ment between the analyzer and human experts on fluid 
status in 83% of scans, and 96% agreement between the 
home-based OCT and in-clinic OCT scans. While simi-
lar results have been reported in clinical settings for 
DME [73], further studies are needed to validate the sys-
tem’s efficiency in a home-based setting.

Technical AI advancements and innovations for DR 
and DME
In the realm of ophthalmology, technical advance-
ments and innovations in AI are paving the way for 

groundbreaking improvements. These technological 
breakthroughs are enhancing accuracy and efficiency in 
the detection and clinical evaluation of these diabetes-
related eye conditions, and providing a more explicit 
understanding of how AI works for DR and DME 
management.

A notable development in this area is the application 
of generative AI, which represents a significant advance-
ment in the field. Generative AI, including techniques 
like naïve Bayes and linear discriminant analysis, has 
seen renewed interest, particularly with applications like 
ChatGPT and in the medical imaging domain through 
diffusion models and GANs, for tasks including classifi-
cation, segmentation, and image synthesis [74].

For DR and DME, a common methodology has been 
to train a GAN with existing retinal fundus images. The 
trained GAN can then be used to generate synthetic reti-
nal fundus images from the learnt distribution. These 
synthetic images can then be considered as additional 
unique image data, with various possible uses. First, these 
images serve as data augmentation, particularly valu-
able for addressing imbalances in dataset distributions 
across DR severity classes. Figure 2 displays a variety of 
synthesized fundus photographs, each representing dif-
ferent classes of DR. Zhou et al. introduced a GAN with 
multi-scale spatial and channel attention module, to 
allow arbitrary grading and lesion label manipulation in 
the GAN latent space [75]. The synthetic images were 
then employed to successfully improve the performance 
of pixel-level segmentation models. Lim et  al. formu-
lated a MixGAN model that attempts to automatically 
adjust the synthetic data distribution to optimize classi-
fier performance [76]. Balasubramanian et al. augmented 
the rare PDR class in their dataset with additional syn-
thetic images generated by a deep convolutional GAN 
(DCGAN) model, towards improving classification 
performance [77]. Synthetic images can function as a 
training dataset, enabling not just the achievement of 
balanced data for improved training, but also the replace-
ment of real data to safeguard patient privacy.

Fig. 2 Examples of synthetic fundus photography of diabetic retinopathy generated by generative adversarial network
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Second, GANs may be used to generate internal fea-
tures, variations or masks of the input image that are 
then indirectly used to aid discrimination. Zhang et  al. 
formulated an encoder-decoder module within a GAN 
to generate normal lesion-free versions of potential-DR 
input images, and compared the generated "fake normal" 
image against the input image with a classifier model 
[78]. Wang et  al. proposed a multichannel semisuper-
vised GAN (SSGAN), which combines multiple parallel 
generators that produce a series of subfundus images, 
which include effective DR features [79]. These generated 
DR features are then compared against actual features 
extracted from the input fundus image, with a discrimi-
nator model. Xiao et al. incorporated HEDNet as a gen-
erator into a conditional PatchGAN-based model, to help 
refine lesion segmentation results [14].

Third, synthetic images generated by GANs may be 
used to aid the training of human graders in diagnosing 
DR and DME, especially where specific combinations 
of lesions or underlying factors that are rarely found in 
reality, are required. In such cases, the realism of the syn-
thetic images becomes important. Chen et  al. evaluated 
the ability of human experts to distinguish retinal images 
generated by a pix2pixHD model using retinal vessel 
maps from real retinal images [80]. They found that only 
59% of the images were correctly identified, suggesting 
that in most cases, human experts could not reliably dis-
cern real from synthetic images. Tavakkoli et al. demon-
strated translation between different image modalities 
for DR with a conditional GAN in producing FFA images 
from fundus photographs [81]. Such domain transfer is 
potentially useful for generating more information from 
existing imaging modalities.

A continuing concern accompanying the use of AI 
models for DR and DME detection and screening in 
practice has been that model decisions are generally 
not directly understandable and auditable by humans. 
This has implications in establishing the robustness of 
AI models with data from different sources, and also 
culpability in the case of incorrect predictions. As such, 
explainable AI (XAI) has understandably become an 
important consideration in AI model acceptance [82].

XAI techniques are commonly categorized as either 
model-agnostic or model-specific, model-based or post-
hoc, and global or local [83]. Model-specific approaches 
depend on a particular AI model, whereas model-
agnostic methods apply across AI models by examin-
ing input–output relationships, effectively viewing the 
model as a "black box". Model-based strategies are inher-
ently interpretable due to simpler features or logic, while 
post-hoc methods impose abstractions for explanation. 
Global techniques offer overarching insights learned 
by the AI, whereas local ones explain individual inputs. 

Since modern DR and DME AI models tend to involve 
image inputs to deep neural network architectures, sali-
ency heatmap techniques such as Grad-CAM [83] and 
Integrated Gradients [84] – which are model-specific, 
post-hoc, local techniques – have tended to be the 
explainability method of choice [76].

Challenges for XAI in DR and DME stem from the 
small scale of lesions, like microaneurysms, against the 
larger retinal image, making it difficult for techniques 
like Grad-CAM to precisely highlight these features. To 
address this, research has shifted towards learning lesion 
segmentation directly [85]. Approaches include inte-
grating VGG16 encoders with U-Net for joint DR clas-
sification and lesion segmentation, employing modified 
U-Nets for semantic segmentation, and using transform-
ers to capture small lesion patterns [86–89]. However, 
a drawback of segmentation as an XAI approach is that 
it requires annotation of individual lesions or lesion 
regions, which is not usually performed in DR grading, 
except in certain research datasets. To avoid this require-
ment, Quellec et  al. introduced the ExplAIn algorithm, 
an end-to-end model that learns the separation between 
foreground/lesions and background pixels through self-
supervision [90]. This requires only image-level labels, 
but allows pixel-level segmentations to be associated 
with the image-level labels through simple rules.

Integrating XAI into DR and DME algorithms offers 
several clinical advantages, including increased trust and 
adoption among clinicians, improved decision-making 
through deeper insights into diagnostic and prognos-
tic factors, and easier model validation. XAI also sup-
ports regulatory compliance by providing transparency 
and accountability in AI-driven decisions, allows for 
personalized patient care through tailored treatment 
plans, and serves as an educational tool that enhances 
clinician understanding of disease patterns. Overall, 
XAI has the potential to bridge the gap between com-
plex AI algorithms and clinical applications, facilitating 
more informed, ethical, and patient-centric healthcare 
practices.

Current challenges and future direction
While the volume of solid evidence supporting the effi-
cacy of AI tools in diagnosing and monitoring these 
conditions is growing, a substantial gap remains in 
translating these technological advances into routine 
clinical practice (Table  1). The discrepancy between 
research findings and real-world performance, along 
with variations in effectiveness across different eth-
nicities and regions, underscores a critical issue [6]. 
Ethical and privacy concerns also play a pivotal role 
in the slow adoption of AI in clinical practice. With 
AI’s reliance on vast datasets for training algorithms, 
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as well as implementation with clinical data, ensuring 
the privacy and security of patient data is critical [91]. 
Furthermore, the ’black box’ nature of some AI algo-
rithms, which do not readily reveal how decisions are 
made, raises ethical questions about transparency and 
accountability in patient care decisions [92].

Another challenge is navigating the regulatory land-
scape. AI applications in healthcare should undergo rig-
orous regulatory review, ensuring they adhere to the 
highest standards of safety and efficacy [93]. For AI tools 
targeting DR and DME, this means undergoing rigorous 
clinical trials and validation studies to satisfy the require-
ments of regulatory bodies like the Food and Drug 
Administration (FDA). However, the dynamic nature of 
AI and the uncertainty in defining the responsibility of AI 
poses unique challenges for regulatory approval.

Moreover, the integration of AI into clinical settings 
also faces practical challenges, such as healthcare staff’s 
bias against new AI methods, and uncertainty of how 
the AI tools should be integrated into clinical work for 
healthcare professionals unfamiliar with AI [94, 95]. 
Addressing these issues requires comprehensive train-
ing programs and initiatives to demonstrate the tangible 
benefits of AI in enhancing patient care. Additionally, 
the varied applications of AI tools in clinical settings can 
influence their cost-effectiveness, presenting another 
obstacle to their real-world implementation [96, 97].

To bridge the gap between evidence and clinical 
implementation, a comprehensive approach is needed. 
This includes promoting closer collaboration between 
AI developers, regulatory bodies, and healthcare pro-
fessionals to streamline the approval process and 
ensure AI tools meet clinical needs. Developing clear 
guidelines and standards for AI in healthcare, along-
side robust training programs for healthcare providers, 
can also accelerate adoption. Additionally, addressing 
ethical and privacy concerns through transparent AI 
algorithms, stringent data protection measures, and 
promoting the use of generative training data will be 
crucial in gaining public trust and acceptance.

Conclusion
The development of novel AI algorithms has tremendous 
transformative potential in the management of DR and 
DME. These state-of-the-art algorithms have the poten-
tial to enhance accuracy in screening, triage, and diag-
nosis and also allow for AI-driven precision medicine 
by enabling longitudinal prediction of disease progres-
sion and recommending tailored interventions. As DR 
screening systems advance and are progressively imple-
mented in real-world settings, transition of burden from 
primary care to specialized medical facilities is expected. 
Consequently, there is a pressing need for tertiary care 
clinicians to arm themselves with higher efficiency AI 
tools. Moving forward, future DR and DME AI research 
endeavors should focus on a unified and thorough regu-
latory framework that ensures effectiveness and safety 
in a broad range of real-world contexts through proper 
deployment methods. This involves refining patient eval-
uations, offering more precise prognostic predictions, 
improving risk stratification, and providing personal-
ized recommendations for follow-up care and treatment. 
Embracing AI-based precision medicine is essential in 
addressing the escalating global burden of DR and DME.

Abbreviations
DR  Diabetic retinopathy
DME  Diabetic macular edema
AI  Artificial intelligence
DM  Diabetes mellitus
FDA  Food and Drug Administration
RDR  Referable diabetic retinopathy
UWF  Ultra‑widefield
ETDRS  Early Treatment of Diabetic Retinopathy Study
DL  Deep learning
AUC   Area under the receiver operating characteristic curve
ML  Machine learning
VA  Visual acuity
CI‑DME  Center‑involved diabetic macular edema
BCVA  Best‑corrected visual acuity
MAE  Mean absolute error
OCT  Optical coherence tomography
CNN  Convolutional neural network
HRD  Hyperreflective dot
DRIL  Disorganization of inner retinal layers
ELM  External limiting membrane
EZ  Ellipsoid zone

Table 1 Current challenges and future direction for research in diabetic retinal diseases

Current Challenges Future direction

Intrinsic performance limitation Expand research on enhancing the core intelligence of AI models to ensure they maintain 
accuracy and reliability when exposed to a broad range of clinical data

Regulatory barriers Collaboration between AI developers, healthcare professionals and regulatory agencies 
to create a comprehensive framework for the evaluation and certification of AI‑based 
medical devices and systems

Ethical and privacy concerns Advance the use of anonymization and synthetic data techniques
Establish clear guidelines and protocols for data handling that build public trust

Implementation difficulties Implementation with proper strategy to ensure cost‑effectiveness
Create educational programs and interactive platforms that facilitate clinician engagement
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COST  Cone outer segment tip
VEGF  Vascular endothelial growth factor
MSE  Mean squared error
logMAR  Logarithm of the minimum angle of resolution
GAN  Generative adversarial networks
UWFFA  Ultra‑widefield fluorescein angiography
OCTA   Optical coherence tomography angiography
SSGAN  Semisupervised generative adversarial networks
XAI  Explainable artificial intelligence
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