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Abstract 

Background To evaluate the therapeutic effects of topical RCI001 (RCI) and compare its efficacy with that of 1% 
prednisolone acetate (PDE) and 5% Lifitegrast in a modified mixed dry eye disease (DED) model.

Methods The environmental DED model was induced in BALB/c mice in a dry chamber with scopolamine. The eyes 
of the mice were treated topically with phosphate buffered saline (PBS), PDE, Lifitegrast or RCI twice daily for 1 week. 
Ocular surface staining (OSS), tear secretion, inflammatory cytokines in the ocular surface and lacrimal gland, 
and immunofluorescence staining in the conjunctiva and cornea(CC) were assessed.

Results The RCI group demonstrated better improvement of OSS and tear secretion than the PBS group (OSS, PBS: 
13.0 ± 1.6, RCI: 9.4 ± 3.0; tear secretion, PBS: 5.0 ± 0.4 mm, RCI: 7.0 ± 0.3 mm, each P < 0.001) and better clinical efficacy 
than PDE and Lifitegrast groups on Day 7 (improvement rate of OSS, RCI: 32.45%, Lifitegrast: 13.13%, PDE: 12.25%). The 
RCI group resulted in significantly lower expression of oxidative stress markers in the CC than the PBS group (4‑HNE, 
NOX2, and NOX4 in the conjunctiva; NOX2 in the cornea, each P < 0.05). However, the PDE and Lifitegrast groups did 
not show significant differences compared with the PBS group. There were no significant differences of inflammatory 
cytokines in the ocular surface and lacrimal gland between all groups.

Conclusion Topical RCI001 showed excellent therapeutic effects in environmental DED models by stimulating 
tear secretion, modulating oxidative stress and improving corneal epithelial healing compared to 1% PDE and 5% 
Lifitegrast.
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Background
Dry eye disease (DED) is a representative ocular surface 
disease (OSD) and is defined as a multifactorial disease 
of the ocular surface characterized by a loss of tear film 
homeostasis accompanied by ocular symptoms [1]. The 
prevalence of DED based on symptoms and signs ranges 
from 5% to 50% worldwide [2]. The overall annual cost 
for the management of DED was estimated to be 3.84 
billion USD and annual cost per patient with DED was 
estimated to be 11,302 USD in the United States [2, 3]. 
Furthermore, modern socioeconomic lifestyles and 
environmental conditions such as medication, cosmet-
ics, digital devices, pollution, and low humidity can also 
aggravate DED, especially hyper evaporative status and 
may intensify its overall prevalence [2, 4].

DED is mainly caused by tear hyperosmolarity and tear 
film instability owing to desiccating stress [5]. Conse-
quently, it causes stress and damage of the ocular surface 
epithelium, which finally triggers complex inflamma-
tory cascades of the innate (epithelial cells, dendritic 
cells, neutrophils, and macrophages; acute response) 
and adaptive (T cells, B cells; chronic response) immune 
responses [5, 6]. The vicious cycle of inflammation is 
regarded as a core aggravating factor in DED with the 
interaction between the sensory neurons of the ocular 
surface and local immune system disrupting ocular sur-
face homeostasis [7, 8]. Therefore, anti-inflammatory 
drugs such as corticosteroids, cyclosporine A, and Lifite-
grast, have been commonly applied to treat DED [7]. 
Diquafosol and rebamipide are also used to reduce des-
iccating stress on the ocular surface by stimulating tear 
fluid or mucin secretion [7, 9, 10]. Topical corticosteroids 
are potent inhibitors of multiple inflammatory mediators 
that can suppress myeloid cell infiltration, maturation of 
antigen-presenting cells, and expression of matrix metal-
loproteinases (MMPs), chemokines, and inflammatory 
cytokines such as interleukin (IL)-1 and tumor necrosis 
factor (TNF)-α [7, 8]. Nonetheless, long-term corticos-
teroid usage induces elevated intraocular pressure, cata-
ract formation, and secondary infection [7]. Although 
T cell inhibitors such as cyclosporin A and Lifitegrast 
are known to treat DED effectively, these agents are less 
potent compared with corticosteroids, especially dur-
ing acute flare in DED [7, 8, 11]. Long-term application 
of topical corticosteroids improved keratoepitheliopathy 
and tear secretion in severe inflammatory DED despite 
the aforementioned potential adverse effects [12]. 
Therefore, it is essential to discover a safe and potent 
anti-inflammatory agent as an alternative to topical 
corticosteroids.

Recently, we demonstrated that topical RCI001 effec-
tively controlled ocular surface inflammation in sev-
eral ocular surface inflammatory experimental models 

[13–15]. RCI001 is a novel therapeutic candidate for 
treating ocular surface diseases including DED. RCI001 
acts as a Rac1 inhibitor and can suppress the NOD-
like receptor protein (NLRP) inflammasome/ IL-1β 
axis, which is known as the main trigger of inflamma-
tion [15]. The active ingredient of RCI001 is 8-oxo-2ʹ-
deoxyguanosine (8-oxo-dG), but its efficacy has not yet 
been investigated using an environmental DED model. 
Thus, here, we evaluated the therapeutic efficacy of 
RCI001 in an environmental DED mouse model and 
compared it with that of two commercially available topi-
cal anti-inflammatory agents for DED, 1% prednisolone 
acetate (PDE) and 5% Lifitegrast.

Methods
Ethics declarations
The protocol was approved by the Institutional Animal 
Care and Use Committee of Seoul National University 
Biomedical Research Institute (IACUC No. 20–0178-
S1A0). Animal experiments were performed in accord-
ance with the: (1) Association for Research in Vision and 
Ophthalmology (ARVO) statement for the use of ani-
mals in ophthalmic vision and research and (2) Animal 
Research: Reporting of In  Vivo Experiments (ARRIVE) 
guidelines.

Animals and experimental design
Twenty-four BALB/c mice (6  weeks old, female) were 
used. The mice were bred in a specific pathogen-free 
facility at the Biomedical Research Institute of Seoul 
National University Hospital (Seoul, Korea), maintained 
at 22–24 °C with 25% or less relative humidity to produce 
an environmental dry eye model, and had free access to 
food and water.

A scopolamine patch was attached to the base of the tail 
of the BALB/c mice. The patch was replaced every 2 days 
and attached for a total of 10 days, and the humidity was 
also kept below 25% for 17 days throughout the experi-
ments (Supplementary Fig. 1). The patch included 1.5 mg 
of scopolamine (Kimite patch; Myungmoon Pharm Co., 
Seoul, Korea). No direct air flow was applied to the eyes 
of the mice. The mice were randomly divided into four 
groups of six mice each: phosphate-buffered saline (PBS), 
PDE ophthalmic suspension 1% (10  mg/mL PDE, Pred 
forte, Allergan, Irvine, CA), Lifitegrast ophthalmic sus-
pension 5% (Xiidra, Novartis, AG Pharma, Basel, Swiss), 
and RCI001 (10 mg/mL, Rudacure, Korea). RCI001 (RCI) 
was dissolved in PBS. Eye drops were instilled twice daily 
for 7 days.

Clinical evaluation of the dry eye
Corneal staining and tear secretion tests were performed 
under anesthesia (a mixture of zoletil and xylazine at a 
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ratio of 1:3). Anesthesia was performed by intramuscular 
injection of tiletamine and zolazepam (30 mg/kg; Zoletil 
50; Virbac, Carros, France) and xylazine hydrochloride 
(5  mg/kg). Ocular surface staining (OSS) scores were 
blindly assigned by two experienced ophthalmologists 
(Y.J. and J.M.) using the National Eye Institute (NEI) scor-
ing scheme. Lissamine Green B (3%) (Sigma-Aldrich) was 
used for corneal staining [16, 17]. After placing one drop 
of dye on the conjunctival sac for 30 s, the ocular surface 
was gently washed with 1 mL of normal saline. Corneal 
staining was observed under a microscope (Olympus 
SZ61; Olympus, Tokyo, Japan). The mice were observed 
using white light (LED) illumination [16, 17]. For the tear 
secretion test, phenol red-impregnated cotton threads 
(FCI Ophthalmics, Pembroke, MA) were placed in the 
lateral canthus of mice for 60 s. A tear secretion test was 
performed after observation of OSS.

Quantitative real‑time polymerase chain reaction
The conjunctiva and cornea (CC) and extraorbital lac-
rimal gland (LG) were cut into small pieces and lysed 
in RNA isolation reagent. After sonication with a probe 
sonicator (Ultrasonic Processor, Cole Parmer Instru-
ments, Vernon Hills, Illinois, USA), total RNA was 
extracted using the RNeasy Mini Kit (Qiagen, Venlo, 
Netherlands), and first-strand cDNA was synthesized 

by reverse transcription (High Capacity RNA-to-
cDNA Kit, Applied Biosystems, Foster City, CA, USA). 
Real-time amplification was performed using TaqMan 
Universal polymerase chain reaction (PCR) Master 
Mix (Applied Biosystems) in an automated instru-
ment (ABI 7500 Real-Time PCR System, Applied Bio-
systems) targeting tumor necrosis factor (TNF)-α 
(TaqMan Gene Expression Assays ID, Mm00443260_
g1), interferon (IFN)-γ, IL-1β (Mm00434228_m1), IL-6 
(Mm00446190_m1), IL-17a (Mm00439618_m1), IL-18 
(Mm00434226_m1), and C-X-C motif chemokine ligand 
1 (CXCL1) (Mm04207460_m1) in the CC. Transform-
ing growth factor (TGF)-β (Mm01178820_m1) and IL-10 
(Mm01288386_m1), including the above factors, were 
also assessed in the LG. Naïve mice were used as a nega-
tive control.

Immunofluorescence staining
CC from sacrificed recipients were subjected to immuno-
fluorescence staining. Oxidative stress induced by desic-
cation was assessed by immunohistochemical detection 
of 4-hydroxy-2-nonenal (4-HNE; a late-phase oxida-
tive stress marker), Nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase 2 (NOX2), and NADPH 
oxidase 4 (NOX4) protein adducts [18]. The avidin–
biotin-peroxidase complex (ABC) method was used 

Fig. 1 Comparison of ocular surface staining and tear secretion before and after treatment with RCI001. a Representative images of ocular surface 
staining of BALB/c mice. b NEI corneal staining score was significantly lower in the RCI001 group than in the PBS group (P < 0.01). NEI corneal score 
improved significantly in the RCI001 group on Day 7 (P < 0.01). c Tear secretion was significantly increased in the RCI001 group on Day 7 (P < 0.001) 
and tear secretion rate was significantly higher in the RCI001 group than in the PBS group on Day 7 (P < 0.001). D, day; NEI, National Eye Institute; 
PBS, phosphate buffered saline; RCI, RCI001. Data are expressed as mean ± standard error of the mean. ***P < 0.001, Mann–Whitney U and Wilcoxon 
signed‑rank tests, n = 12 per group
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for immunofluorescence staining. Tissues were fixed 
overnight in a 4% buffered paraformaldehyde solution 
and processed for paraffin embedding. Sections  4  µm 
thick were cut from paraffin wax blocks, mounted on 
precoated glass slides, deparaffinized, and rehydrated. 
Mean fluorescein intensity (MFI) was measured in three 
regions of interest (ROIs) of the conjunctival fornix and 
cornea using ImageJ software (National Institutes of 
Health, Bethesda, MD, USA).

Statistical analyses
For between- and intra-group comparisons, Mann–Whit-
ney U and Wilcoxon signed-rank tests were used. One-way 
ANOVA followed by Tukey’s multiple comparison test 
was used for comparison of the four groups. Results are 
expressed as mean ± standard deviation (SD). Data were 
analyzed using the GraphPad Prism software (version 9.0.1; 
GraphPad Software, San Diego, CA, USA). All statistical 
tests were performed using two-tailed tests, and P-val-
ues less than 0.05 were considered statistically significant.

Results
RCI001 significantly improved keratoepitheliopathy 
and tear secretion
On Day 7, the average OSS scores of RCI001 group were 
significantly lower (9.4 ± 3.0) than those of PBS group 
(13.0 ± 1.6) (P < 0.010; Fig. 1a–b). Tear secretion was sig-
nificantly higher in the RCI001 group (7.0 ± 0.3  mm) 
than in the PBS group (5.0 ± 0.4 mm) (P < 0.001; Fig. 1c). 
In RCI group, the OSS score and tear secretion were sig-
nificantly improved even when compared with the pre-
treatment stage (Day 0 vs. Day 7, OSS score: 13.9 ± 1.1 vs. 
9.4 ± 3.0; Tear secretion: 4.7 ± 0.3  mm vs. 7.0 ± 0.3  mm, 
P < 0.001, respectively; Fig. 1b–c).

RCI001 showed better epithelial healing effects than PDE 
and Lifitegrast
OSS scores dramatically improved in the RCI001 group 
on Day 7 compared to Day 0 (Fig.  2). Based on clini-
cal photographs, the recovery of OSS in the RCI001 
group seemed more effective than that in the PDE and 

Fig. 2 Representative images of ocular surface staining of BALB/c mice in the RCI001, 1% prednisolone acetate (PDE), and 5% Lifitegrast groups
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Lifitegrast groups (Fig.  2). In the clinical score analysis, 
the RCI group had a significantly reduced OSS score 
(9.4 ± 3.0) compared with the PDE group (12.3 ± 1.3, 
P < 0.010) and comparable results to those of the 5% 
Lifitegrast group (10.7 ± 3.5, P > 0.050) on Day 7 (Fig. 3a–
b). Comparing the improvement rate of OSS scores 

between Days 0 and 7, the RCI group showed the high-
est improvement (32.45%), followed by the Lifitegrast 
(13.13%), PDE (12.25%), and PBS (0.76%) groups (Fig. 3c).

Tear secretion was significantly increased in the RCI, 
PDE, and Lifitegrast groups compared to the PBS group 
(each P < 0.001, Fig.  3d–f). Among RCI, PDE, and Lifite 

Fig. 3 Comparison of clinical scores between the PBS, PDE, Lifitegrast, and RCI groups. a There was no significant difference in NEI corneal staining 
score of BALB/c mice at baseline between the four groups. b NEI corneal staining score was significantly lower in the RCI group than in the PDE 
group (P < 0.01) on Day 7. c Rate of change in corneal staining score between Days 0 and 7 of each group. d There was no significant difference 
in tear secretion of BALB/c mice at baseline between the four groups. e Tear secretion was significantly improved in the RCI, Lifitegrast, and PDE 
groups compared with that in the PBS group on Day 7 (P < 0.01). f Rate of change in tear secretion between Days 0 and 7 of each group. NEI, 
National Eye Institute; PBS, phosphate buffered saline; PDE, 1% prednisolone acetate; Lifite, 5% Lifitegrast; RCI, RCI001. Data are expressed 
as mean ± standard error of the mean. **P < 0.01, ***P < 0.001, one‑way ANOVA with Tukey’s post hoc test, n = 12 per group

Fig. 4 Comparison of inflammatory cytokines in the corneoconjunctiva (CC) between the Neg, PBS, PDE, Lifitegrast, and RCI groups (a–g). 
Neg, naïve control; PBS, phosphate buffered saline; PDE, 1% prednisolone acetate; Lifite, 5% Lifitegrast; RCI, RCI001. Data are expressed 
as the mean ± standard error of the mean. *P < 0.05, one‑way ANOVA with Tukey’s post hoc test, n = 9 per group.) RQ, relative quantification of mRNA 
expression
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groups, tear secretion was similar (RCI: 7.0 ± 0.3  mm, 
PDE: 6.5 ± 0.5  mm, and Lifite: 6.6 ± 0.4  mm). The 
increased tear secretion rates on Day 7 were similar 
between the RCI (49.02%), Lifitegrast (49.36%), and PDE 
(44.02%) groups. The increase in tear secretion rate in the 
PBS group was 7.30% (Fig. 3f ).

Inflammatory cytokine expression of the RCI group 
was comparable to that of the PDE, and Lifitegrast groups
In the RCI group, most inflammatory cytokines in the 
CC (IFN-γ, TNF-α, CXCL1, IL-18, IL-1β, and IL-6) and 
LG (IFN-γ, TNF-α, CXCL1, IL-18, IL-17a, IL-1β, IL-6, 
TGF-β, and IL-10) were not significantly changed com-
pared to the naïve control (Neg) and Lifitegrast groups 
(P > 0.050, Figs.  4 and 5). Additionally, there were no 
significant differences in inflammatory cytokines of CC 
between the RCI and PDE groups except for IFN-γ in CC 

and the difference of IFN-γ levels were slight (Fig. 4a). IL-
17a levels of CC in the Neg group were slightly increased 
compared with those of other treatment groups (PBS, 
PDE, Lifitegrast, and RCI) (P < 0.050, Fig.  4). The PDE 
group showed lower expression of TNF-α and CXCL1 in 
the LG than the Lifitegrast and RCI groups; however, the 
differences were slight (Fig. 5b, c).

RCI treatment resulted in decreased levels of oxidative 
stress markers
The RCI group showed notably weaker 4-HNE, NOX2 
(red), and NOX4 fluorescence (green) than the PBS, PDE, 
and Lifitegrast groups in the conjunctival fornix (yellow 
arrow, Fig. 6). Additionally, the RCI group showed weaker 
red fluorescence of NOX2 in the cornea than the PDE 
and Lifitegrast groups (white arrow, Fig.  7). In the con-
junctiva, the MFI values of 4-HNE, NOX2, and NOX4 of 

Fig. 5 Comparison of inflammatory cytokines in the lacrimal gland (LG) between the Neg, PBS, PDE, Lifitegrast, and RCI groups (A–I). Neg, naïve 
control; PBS, phosphate buffered saline; PDE, 1% prednisolone acetate; Lifite, 5% Lifitegrast; RCI, RCI001. Data are expressed as the mean ± standard 
error of the mean. *P < 0.05, one‑way ANOVA with Tukey’s post hoc test, n = 9 in each group. RQ, relative quantification of mRNA expression



Page 7 of 11Jung et al. Eye and Vision           (2024) 11:19  

the RCI group were significantly lower than those of the 
PBS group (each P < 0.050, Fig. 8a–c). Additionally in the 
cornea, NOX2 in the RCI group was significantly lower 
than that of the PDE group (P < 0.050, Fig. 8d).

Discussion
Here, the RCI group demonstrated excellent therapeutic 
effects compared to the PBS group, and the effects of RCI 
were comparable with those of 1% PDE and 5% Lifitegrast 
in clinical and molecular biological aspects in the envi-
ronmental DED model. In particular, corneal epithelial 
healing effects and suppression of oxidative stress on the 
ocular surface in the RCI group were better than those in 

the PDE and Lifitegrast groups. The PDE group showed 
the best suppression of inflammatory cytokines in the CC 
and LG; however, the difference was slight compared to 
the RCI group.

8-oxo-dG is a substance that is released when the gua-
nine base of cellular DNA is damaged [19]. Interestingly, 
exogenous applications of 8-oxo-dG showed potent anti-
inflammatory and anti-oxidative effects in several inflam-
matory disease models through Rac1 inhibition [19–22]. 
Rac1-associated functions include phagocytosis, chemot-
axis, inflammatory cytokine release, and reactive oxygen 
species production through NADPH oxidase activation 
[23]. Additionally, Rac1 is associated with the regulation 

Fig. 6 Representative images of the immunofluorescence staining (200 ×) of 4‑HNE (a), NOX2 (b), and NOX4 (c) expression in conjunctiva dissected 
from the experimental dry eye model. The RCI group saw reduced expression levels of 4‑HNE, NOX2, and NOX4, and the decrease was comparable 
to that in the PBS, PDE, and Lifitegrast groups (yellow arrows). Red, 4‑HNE and NOX2; green, NOX4; blue, nuclear DAPI staining. Scale bar: 100 μm, 
n = 3 per group; PBS, phosphate buffered saline; PDE, 1% prednisolone acetate; Lifite, 5% Lifitegrast; RCI, 1.0% RCI001; 4‑HNE, 4‑hydroxy‑2‑nonenal; 
NOX2, nicotinamide adenine dinucleotide phosphate oxidase 2; NOX4, nicotinamide adenine dinucleotide phosphate oxidase 4; DAPI, 
4′,6‑diamidino‑2‑phenylindole
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of mitogen-activated protein kinase (MAPK), extracellu-
lar signal-regulated kinase (ERK), Janus kinase (JAK)/sig-
nal transducer and activator of transcription (STAT), and 
nuclear factor kappa light chain enhancer of activated B 
cells (NF-κB) [23–25]. Our previous study showed that 
topical RCI001 suppressed activation of neutrophils and 
macrophages and inhibited Rac1/NLRP3 inflammasome/
IL-1β axis in experimental ethanol injury and alkali burn 
models [13–15]. Furthermore, expression of TNF-α, 
NOX2, and NOX4 after RCI001 treatment was signifi-
cantly lower compared with that after PDE treatment in 
an alkali-burned cornea mouse model [14].

The immune component functioning at the ocular 
surface involves both innate and adaptive systems [26]. 
Complex regulatory processes protect the ocular surface; 
however, when dysregulated, it can lead to DED [5, 27]. 
Various environmental stresses such as wind, low humid-
ity, air pollution, and video display terminals usage trig-
ger an innate immune response of DED on the ocular 

surface [5, 28, 29], and MAPK, ERK, and NF-κB can be 
induced by this activated innate response [8]. A variety 
of immune cells, cytokines, and chemokines are involved 
in this complex immune pathway of DED: dendritic cells 
(antigen-presenting cells), neutrophils, macrophages, T 
cells  (CD4+ and  CD8+), TNF- α, IL-1, IL-6, IL-17, IFN-γ, 
CCR7, and CXCL1 [30]. Topical agents for DED that are 
currently available include corticosteroids, cyclosporine, 
Lifitegrast, diquafosol, and rebamipide. These agents are 
involved in complex DED immunopathogenic pathways 
and exert therapeutic effects through various mecha-
nisms of action. However, there are evident unmet medi-
cal needs with regard to therapeutics for DED owing to 
limitations of long-term usage, irritation, and insufficient 
clinical effects. RCI is thought of as a promising candi-
date for DED therapeutics. RCI can act as a powerful 
inhibitor of multiple inflammatory mediators and various 
immune cells, similar to corticosteroids, and has potent 
antioxidative effects [14, 15]. Our preclinical in vivo study 

Fig. 7 Representative images of the immunofluorescence staining (200 ×) of NOX2 expression in the cornea dissected from the experimental dry 
eye model. The RCI group showed reduced expression of NOX2, and the reduction was comparable to that in the PDE and Lifitegrast groups (white 
arrows). Red, NOX2; blue, nuclear DAPI staining. Scale bar: 100 μm; n = 3 per group. PDE, 1% prednisolone acetate; Lifite, 5% Lifitegrast; RCI, 1.0% 
RCI001; NOX2, nicotinamide adenine dinucleotide phosphate oxidase 2; DAPI, 4′,6‑diamidino‑2‑phenylindole
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also demonstrated that long-term topical application of 
RCI001 for more than 5 weeks did not induce elevation of 
intraocular pressure [31]. In accordance with the results 
of our previous study, RCI showed better epithelial heal-
ing and suppression of oxidative stress than 1% PDE and 
5% Lifitegrast [13–15]. Inflammatory cytokines were not 
highly activated in the environmental DED model in this 
study, and the PDE group was the most effective in sup-
pressing inflammatory cytokines. PDE is the most potent 
topical corticosteroid and Lifitegrast is a novel integrin 
antagonist which prevents LFA-1/ICAM-1 interaction 
preventing T-cell activation/recruitment and release 
of inflammatory mediators. However, Lifitegrast is not 
available in South Korea at the moment. Therefore, we 
compared these agents with RCI. Nevertheless, given 
the greater improvement in OSS and tear secretion in 
the RCI group than in the PDE group, the anti-oxidative 
potency of RCI may suppress different pathways, unlike 
corticosteroids. We will continue to verify the efficacy of 
RCI in the inflammatory DED model (Primary Sjogren 
syndrome model) and other ocular surface inflammatory 
disease models.

This study had several limitations. First, the sample 
size was small. Second, the long-term changes or more 
environmental ocular stress were not assessed in the 
experimental models. Third, meibomian gland dysfunc-
tion, which is a major cause of DED, was not evaluated. 
Nevertheless, this study demonstrated that RCI has an 
excellent anti-inflammatory and antioxidative effects 
comparable to those of corticosteroids and Lifitegrast.

Conclusion
This study revealed that topical RCI effectively 
improved keratoepitheliopathy and tear secretion, and 
its efficacy was better than that of the commercially 
available 1% PDE and 5% Lifitegrast in environmental 
DED models. RCI also effectively suppressed oxida-
tive stress on the ocular surface compared with the two 
commercially available agents. These excellent thera-
peutic effects of RCI in ocular surface diseases were 
consistent with our previous studies [13–15]. Con-
sidering the various mechanisms of action of RCI and 
complex immunopathogenesis in DED, we believe that 
topical RCI is a promising therapeutic agent for DED.

Fig. 8 Mean fluorescein intensity (MFI) values of 4‑HNE, NOX2, and NOX4 of conjunctiva (a–c) and those of NOX2 of cornea (d). The MFI 
values of RCI group in the CC were only significantly decreased compared to those of PBS group. PBS, phosphate buffered saline; PDE, 1% 
prednisolone acetate; Lifite, 5% Lifitegrast; RCI, RCI001; 4‑HNE, 4‑hydroxy‑2‑nonenal; NOX2, nicotinamide adenine dinucleotide phosphate oxidase 
2; NOX4, nicotinamide adenine dinucleotide phosphate oxidase 4; DAPI, 4′,6‑diamidino‑2‑phenylindole; n = 3 per group. Data are expressed 
as the mean ± standard error of the mean. *P < 0.05, one‑way ANOVA with Tukey’s post hoc test
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