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Abstract 

Background  To describe the diagnostic performance of a deep learning (DL) algorithm in detecting Fuchs endothe‑
lial corneal dystrophy (FECD) based on specular microscopy (SM) and to reliably detect widefield peripheral SM 
images with an endothelial cell density (ECD) > 1000 cells/mm2.

Methods  Five hundred and forty-seven subjects had SM imaging performed for the central cornea endothelium. 
One hundred and seventy-three images had FECD, while 602 images had other diagnoses. Using fivefold cross-valida‑
tion on the dataset containing 775 central SM images combined with ECD, coefficient of variation (CV) and hexagonal 
endothelial cell ratio (HEX), the first DL model was trained to discriminate FECD from other images and was fur‑
ther tested on an external set of 180 images. In eyes with FECD, a separate DL model was trained with 753 central/
paracentral SM images to detect SM with ECD > 1000 cells/mm2 and tested on 557 peripheral SM images. Area 
under curve (AUC), sensitivity and specificity were evaluated.

Results  The first model achieved an AUC of 0.96 with 0.91 sensitivity and 0.91 specificity in detecting FECD 
from other images. With an external validation set, the model achieved an AUC of 0.77, with a sensitivity of 0.69 
and specificity of 0.68 in differentiating FECD from other diagnoses. The second model achieved an AUC of 0.88 
with 0.79 sensitivity and 0.78 specificity in detecting peripheral SM images with ECD > 1000 cells/mm2.

Conclusions  Our pilot study developed a DL model that could reliably detect FECD from other SM images and iden‑
tify widefield SM images with ECD > 1000 cells/mm2 in eyes with FECD. This could be the foundation for future DL 
models to track progression of eyes with FECD and identify candidates suitable for therapies such as Descemet strip‑
ping only.
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Background
Fuchs corneal endothelial dystrophy (FECD) is the most 
common posterior corneal dystrophy and one of the 
leading indications for corneal transplantation world-
wide. In early FECD, guttae formation and endothelial 
cell density (ECD) decline manifest in the central cornea 
[1]. In advanced FECD, peripheral ECD highly correlates 
with disease severity [2]. Corneal transplantation tech-
niques have allowed for more selective keratoplasty, and 
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the replacement of only the diseased layers of the cor-
nea [3]. However, current endothelial keratoplasty tech-
niques still carry the possibility of graft rejection [4], and 
there remains a worldwide shortage of donor corneas for 
transplants [5]. Recent studies have suggested a role for 
Descemet stripping only (DSO), which involves creat-
ing a small 4 to 5 mm central descemetorhexis to remove 
diseased endothelium and guttae without the placement 
of any donor graft [6]. This is based on the principle that 
the central endothelium of FECD eyes is capable of self-
regeneration via centripetal migration of healthy periph-
eral corneal endothelial cells that allows for spontaneous 
resolution of corneal edema [7].

Specular microscopy (SM) is a non-contact, non-inva-
sive technique that sends light towards the cornea at an 
incidence angle and captures the reflected light from 
the interface between the endothelium and the aqueous 
humour [8]. Based on these images, in-built software 
automatically derives the ECD, the hexagonal endothe-
lial cell ratio (HEX), and coefficient of variation (CV). 
The three parameters incorporated include ECD, CV, and 
HEX [8, 9].

Of recent, multiple case series of DSO with careful 
FECD patient selection have reported excellent success, 
with corneal edema clearing in up to 100% of patients 
[10]. The ideal patient for DSO would include those with 
peripheral ECD of > 1000  cells/mm2 without guttae [6]. 
This observational evidence demonstrated a potential 
that a machine learning approach could be trained in 
the identification of mild to moderate FECD eyes with 
healthy peripheral corneal endothelial reserves that 
would be useful to clinicians in selecting appropriate eyes 
that could benefit from this therapy. This deep learning 
(DL) model could potentially facilitate earlier interven-
tion strategies in this subset of FECD eyes.

Thus far, no other studies have reported on the use 
of DL models for the above purpose. Earlier studies so 
far have developed DL systems for segmenting corneal 
endothelial cells and deriving the endothelial morpho-
metric parameters, using either SM [11–22] or in  vivo 
confocal microscopy [16, 23]. Artificial intelligence 
(AI) has also been shown to aid in detecting or predict-
ing corneal disease progression [24], such as via ante-
rior segment optical coherence tomography (AS-OCT) 
imaging [25]. Other DL models have evaluated ultrathin 
Descemet stripping automated endothelial keratoplasty 
(DSAEK) grafts with SM images [26], detected Descemet 
membrane endothelial keratoplasty (DMEK) graft 
detachments [27], and predicted the need for graft re-
bubbling [28]. The primary aim of this novel study was 
hence to first assess the performance of a DL algorithm 
not only for the detection of FECD eyes from central 
SM images as a foundational step, but also to identify 

widefield SM images with ECD > 1000 cells/mm2 in eyes 
with FECD.

Methods
Study population and datasets
We used de-identified high-resolution SM images to 
develop and evaluate the DL models. Ethics review 
and institutional board exemption were obtained from 
the SingHealth Institutional Review Board (IRB num-
ber 2018/2008). For the first DL model, 775 central SM 
images of the corneal endothelium were captured with 
a noncontact specular microscope Konan NSP-9900 
(Konan Medical, Inc. Hyogo, Japan), and the SM param-
eters were calculated with the manual Center Method 
[16]. Images were diagnosed by trained ophthalmolo-
gists to classify 369 normal SM  images (Fig.  1a), 173 
SM  images with FECD (Fig.  1b and c), and 233 with 
abnormal SM  images due to other conditions e.g., pig-
ments, iatrogenic endothelial damage, or uveitis, and 
etc. (Fig.  1c). We excluded images of poor quality from 

Fig. 1  Various specular microscopy (SM) images that are used 
to train deep learning (DL) model 1. a Normal SM image. b SM image 
with Fuchs endothelial corneal dystrophy (FECD) (non-confluent 
guttae). c SM image with FECD (confluent guttae). d SM image 
with pigments on endothelium (uveitis)
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corneal edema or image artefacts due to eye movement 
or blinking, eyes with previous corneal surgery such as 
keratoplasty. A second independent dataset of central 
SM images from patients with a similar proportion of 
normal, FECD and other abnormal images was used for 
external validation for the first DL model, consisting of 
90 subjects (180 eyes) graded by a trained cornea special-
ist (E.W.).

A third independent database consisting 753 paracen-
tral and 557 peripheral SM images from only eyes with 
FECD, using a non-contact widefield SM system (CEM-
530, Nidek Co., Ltd, Japan) was used to train the sec-
ond DL model. The widefield SM is only available under 
Nidek and not Konan, and allows for an even larger view-
ing area, which captures an additional eight different 
paracentral images for every 1.5 clock hours 5 degrees 
from the center (radius of 0.6 mm from the centre) and 
six peripheral images for every 2 clock hours 27 degrees 
from the center (radius of 3.7 mm from the centre) of the 
cornea endothelium, giving a total of 15 SM images per 
eye. The imaging point was controlled by patient fixation 
and based on the patient’s primary line of sight [16].

Outcomes
The aim of the first DL model was to differentiate 
between FECD and non-FECD eyes. Normal SM param-
eters were defined as having all three criteria of ECD of 
≥ 2000 cells/mm2 [9], CV < 40% [10] and HEX > 60% [10]. 
FECD was diagnosed by trained ophthalmologists as hav-
ing bilateral central guttae on slit-lamp examination, with 
an ECD < 2000  cells/mm2 or if ECD ≥ 2000  cells/mm2, 
then with HEX < 60% and/or CV > 40%. Eyes with mild 
to moderate FECD (defined by the Krachmer scale [29] 
of Grade 1 to 5 without corneal edema) were included 
in the study. Non-FECD with abnormal SM images were 
defined as having ECD < 2000  cells/mm2 due to other 
pathologies such as other endothelial dystrophies, pre-
vious intraocular surgeries, or anterior uveitis. Both the 
endothelial parameters of ECD, CV and HEX as well as 
SM images were incorporated into the training dataset 
for the first DL model.

The aim of the second DL model was to identify wide-
field SM images with ECD > 1000  cells/mm2 in eyes 
with FECD. The theoretical cut-off of peripheral ECD 
≤ 1000 cells/mm2 is the exclusion criteria for DSO adapted 
from Moloney et  al. [6], although not yet clinically vali-
dated. Only SM images without their clinical parameters 
were used for the training dataset in this second DL.

Algorithm development
For the first DL model, for image-based classifica-
tion of the SM images, a pre-trained DenseNet-121 

architecture was used with fivefold cross-validation. 
DenseNet-121 was pre-trained with the ImageNet data-
set. Then, for each of the cross-validation folds, the 
four folds assigned for training were further randomly 
divided into training data and internal validation data, 
in an approximately 4:1 ratio. The training data is then 
used to optimize the DenseNet model neuron weights 
with an initial learning weight of 0.001 and Nesterov 
momentum of 0.9, until accuracy converges on the 
internal validation data. The DenseNet model image-
based predictions can then be obtained on the held-out 
test data, numerical outputs from the DenseNet model, 
for each image. The six values are then used as the 
inputs to a Random Forest classifier. The same cross-
validation folds, as used for DenseNet training and vali-
dation, are retained. Hyperparameters relating to the 
number of tree estimators, the number of features to 
consider when looking for the best split, the maximum 
depth of the tree estimators and the quality criterion 
used are then optimized by grid search on the internal 
validation data for each fold. Again, the model with the 
best internal validation accuracy is used to evaluate the 
test data for each fold (Fig. 2).

A second DenseNet-121 model was trained for the 
subsequent DL model. A new independent training 
set comprised of the paracentral scans (211 images 
with ECD ≤ 1000  cells/mm2, 571 images with ECD 
> 1000  cells/mm2), and the test set comprised of the 
peripheral scans (109 images with ECD ≤ 1000  cells/
mm2, 478 images with ECD > 1000 cells/mm2) (Fig. 3). 
As with the previous DenseNet model, the training set 
was randomly divided into training and internal valida-
tion in a 4:1 ratio, and the same initial model param-
eters were used.

Saliency maps
To understand which areas of the SM images were most 
likely used by the algorithm for the distinction between 
FECD and other non-FECD SM images, we generated 
saliency maps using Integrated Gradients, highlighting 
the areas in the image which contributed more towards 
the output (i.e., higher density of green pixels indicating a 
greater contribution).

Statistical analysis
Statistical analyses were performed using SPSS software 
version 26.0 (SPSS, Chicago, IL, USA), and MATLAB 
2019b (MathWorks, Natick, MA). We calculated the area 
under the curve (AUC), sensitivity and specificity. The 
95% confidence intervals (CIs) for these performance 
metrics were estimated using the cross-validated sensi-
tivity and specificity, on the full datasets.
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Results
We developed the first DL model using 775 SM images. 
We further validated the performance of the algorithm 
on the entire internal dataset through five-fold cross-val-
idation, and on 180 SM images from the external test set.

First, we examined the performance of the algorithm 
for discrimination of abnormal (both FECD and non-
FECD) from normal SM images. In the internal valida-
tion set, the AUC for detection of abnormal SM images 
was 0.92 (95% CI: 0.86–0.91), with a sensitivity of 0.86 
(95% CI: 0.82–0.89) and specificity of 0.86 (95% CI: 
0.84–0.91). In the external validation set, the AUC for 
discrimination of abnormal SM images was 0.82 (95% CI: 
0.89–0.93) with a sensitivity of 0.74 (95% CI: 0.68–0.80) 
and specificity of 0.74 (95% CI: 0.68–0.80).

In differentiating between FECD and other diagno-
ses, the internal validation set demonstrated an AUC of 
0.96 (95% CI: 0.94–0.98), with a sensitivity of 0.91 (95% 

CI: 0.87–0.96) and specificity of 0.91 (95% CI: 0.90–0.94) 
(Fig. 4). The external validation set demonstrated AUC of 
0.77 (95% CI: 0.69–0.76) with a sensitivity of 0.69 (95% 
CI: 0.62–0.72) and specificity of 0.68 (95% CI: 0.61–0.74) 
(Fig.  5). We compared the performance of our AI with 
that of an experienced cornea specialist (E.W.) in grading 
the SM images for FECD vs. other non-FECD diagnoses 
and found equivalent or superior results of the AI com-
pared to the human grader. The human grader achieved 
a sensitivity of 0.33 and specificity of 0.96 in differentiat-
ing abnormal vs. normal SM images, and FECD from the 
other diagnoses with a sensitivity of 0.89 and specificity 
of 0.94. 

For the second DL model, to identify widefield SM 
images with ECD > 1000 cells/mm2 in eyes with FECD, a 
sensitivity and specificity of 0.79 (95% CI: 0.70–0.86) and 
0.78 (95% CI: 0.74–0.81) were achieved respectively, with 
an AUC of 0.88 (95% CI: 0.78–0.85).

Fig. 2  Flowchart demonstrating the training and cross-validation of the DenseNet-121 model for the first deep learning model. ECD, endothelial 
cell density; CV, coefficient of variation; HEX, hexagonal endothelial cell ratio
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Fig. 3  Figure demonstrating the clinical utility of the second deep learning model. Green ticks represent widefield specular microscopy (SM) 
images which have ECD > 1000 cells/mm2. Red crosses represent widefield SM images which have ECD ≤ 1000 cells/mm2

Fig. 4  Receiver operating characteristic (ROC) curves for detection 
of normal vs. abnormal (Class 0), Fuchs endothelial corneal dystrophy 
(FECD) vs. non-FECD (Class 1) and other vs. normal/FECD (Class 2), 
based on specular imaging in the internal validation dataset. ECC, 
endothelial cell count

Fig. 5  Receiver operating characteristic (ROC) curves for detection 
of normal vs. abnormal (Class 0), Fuchs endothelial corneal dystrophy 
(FECD) vs. non-FECD (Class 1) and other vs. normal/FECD (Class 2), 
based on specular imaging in the external validation dataset. ECC, 
endothelial cell count
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Saliency maps highlighted regions within the central, 
paracentral, and peripheral SM images which the DL 

model likely focused on when identifying FECD amongst 
other diagnoses (Fig.  6a–j). Generally, the highlighted 
regions corresponded well within guttae for FECD. 
Building on these illustrations, these clinically informa-
tive saliency maps could be incorporated as part of the 
screening algorithm. Normal images did not show any 
standout features on the saliency maps.

Discussion
Here, we have described the design and validation of a fully 
automated DL model that could reliably detect specular 
images of FECD from non-FECD eyes with a sensitivity of 
91% and specificity of 91%. The algorithm showed equiva-
lent or superior performance to that of a trained experi-
enced human cornea specialist. In addition, our DL model 
could distinguish peripheral specular images with an ECD 
> 1000 cells/mm2 from those with ECD ≤ 1000 cells/mm2 
in FECD eyes, with a sensitivity and specificity of close to 
80%. To the best of our knowledge, our study is the first to 
use a DL approach to automatically diagnose FECD based 
on SM images and identify widefield SM images with 
healthy peripheral endothelial reserves that could aid cor-
neal surgeons in identifying suitable eyes for earlier thera-
peutic measures such as DSO.

Earlier studies have developed DL systems for seg-
menting corneal endothelial cells and deriving the mor-
phometric parameters, using either specular microscopy 
[11–18] or in  vivo confocal microscopy [19, 23] based 
on datasets comprising of either normal or FECD eyes. 
Unlike our study, these were either limited by smaller 
sample sizes, or did not pursue automated screening for 
abnormal SM images or FECD. Furthermore, we utilised 
‘real-world’ SM images of various cornea endothelial 
abnormalities to train the DL model. The more densely 
pixelated regions were congruent with guttae (Fig.  5), 
confirming that the algorithm was able to detect FECD 
based on clinically appropriate features of the disease 
[20]. In addition, our DL model could identify peripheral 
SM images with ECD > 1000  cells/mm2 in FECD eyes. 
In the early stages of FECD, changes in endothelial mor-
phology are observed centrally, before manifesting in the 
peripheries [21, 22]. Due to significant regional variations 
in the distribution of guttae and endothelial cell changes, 
the widefield SM could provide more information apart 

Fig. 6  Saliency maps highlighting regions which the deep learning 
algorithm evaluated. a, b Uveitis with pigments seen. c, d Central 
specular microscopy (SM) images of Fuchs endothelial corneal 
dystrophy (FECD) with non-confluent guttae seen. e, f Central SM 
images of FECD with confluent guttae seen. g, h Paracentral SM 
images of FECD with guttae seen. i, j Peripheral SM images of FECD 
with guttae seen
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from central specular imaging in FECD eyes. Thus, our 
DL model could potentially assist in screening for suit-
able FECD eyes that might benefit from earlier treat-
ments such as DSO with topical Rho-associated protein 
kinase inhibitor (ROCK-I) application. Future studies 
with larger data sets from various patient cohorts in real 
healthcare settings are needed to evaluate and determine 
the utility of these algorithms for patient selection and 
treatment response from such therapies. It is important 
to also note that as the retrospective datasets have under-
gone extensive filtering and cleaning, they were likely less 
representative of the real-world practice and hence may 
yield suboptimal performances when applied to clinical 
practice. The training methodology included early stop-
ping on the accuracy of an independent validation set 
with all classes sampled to the same number of images, 
as a best practice to mitigate oversampling. Despite this, 
performance on our internal dataset remains higher than 
that on the external datasets, which may be attributed to 
the external datasets not obeying the same data distribu-
tion as the internal dataset, possibly due to subject/imag-
ing differences. Therefore, performance on the external 
datasets would reflect the performance of the DL algo-
rithm under more realistic conditions.

Despite the promising results from our pilot study, we 
recognise the limitations of our early results. First, our 
dataset is derived from a single center, which limits the 
generalisability of our results. Internal and external vali-
dation with a trained cornea specialist was hence per-
formed to evaluate the clinical utility of our algorithm, 
which demonstrated that our algorithm performed 
equivalent or superior to the trained human grader. 
Larger studies would still be needed to evaluate its real-
world performance. In SM images with corneal edema, 
the specular reflection is affected, which prohibits the 
visualisation of the corneal endothelium and precludes 
accurate analysis by the algorithm. Hence, we excluded 
SM images of eyes with significant corneal edema in our 
datasets, which helped to ensure a high-quality train-
ing set to ensure optimal performance of our algorithm. 
Moreover, for our training and validation datasets, the 
eyes with FECD were not stratified according to dis-
ease severity as we also did not collect data on the exact 
severity grading of FECD for each eye according to the 
Kracher grading, or specify which eye had confluent or 
non-confluent guttae. Hence, our test sets may have lim-
ited cases for each subtype of FECD. While our algorithm 
performed well in screening abnormal SM images, it 
needs to be further finetuned to reduce misdiagnoses or 
unnecessary referrals. Images that were misclassified by 
the first algorithm i.e., 55/775 (7.1%) considered ‘normal’ 

were from old pigments or keratic precipitates and had 
fairly normal images with borderline SM parameters. On 
the other hand, 65/775 (8.4%) were considered ‘abnormal’ 
due to imaging artifacts. Therefore, additional refinement 
of the algorithm will be needed to enhance differentiation 
between artefacts and pigments from guttae in FECD 
eyes. Despite their potential to support clinical practice, 
the generalisability of these AI models to large-scale 
populations remains uncertain and require validation 
through large randomised controlled trials to demon-
strate their added clinical value before their widespread 
adoption.

Conclusion
In conclusion, we describe the development of a DL 
model that could be used to detect FECD from specu-
lar microscopy, which requires further refinement and 
validation in other populations. A further DL tech-
nique could also detect eyes with central guttae with 
a healthy ECD in peripheral specular images in eyes 
with FECD. If validated, these algorithms could be a 
useful assistive device in the early detection, disease 
monitoring and patient selection for the treatment of 
corneal endothelial diseases such as Fuchs dystrophy. 
The findings of our study is the necessary first step in 
that process of development for future work.
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