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Abstract 

Background Abnormal blinking pattern is associated with ocular surface diseases. However, blink is difficult 
to analyze due to the rapid movement of eyelids. Deep learning machine (DLM) has been proposed as an optional 
tool for blinking analysis, but its clinical practicability still needs to be proven. Therefore, the study aims to compare 
the DLM-assisted Keratograph 5M (K5M) as a novel method with the currently available Lipiview in the clinic 
and assess whether blinking parameters can be applied in the diagnosis of dry eye disease (DED).

Methods Thirty-five DED participants and 35 normal subjects were recruited in this cross-sectional study. DED 
questionnaire and ocular surface signs were evaluated. Blinking parameters including number of blinks, number 
of incomplete blinking (IB), and IB rate were collected from the blinking videos recorded by the K5M and Lipiview. 
Blinking parameters were individually collected from the DLM analyzed K5M videos and Lipiview generated results. 
The agreement and consistency of blinking parameters were compared between the two devices. The association 
of blinking parameters to DED symptoms and signs were evaluated via heatmap.

Results In total, 140 eyes of 70 participants were included in this study. Lipiview presented a higher number 
of IB and IB rate than those from DLM-assisted K5M (P ≤ 0.006). DLM-assisted K5M captured significant differences 
in number of blinks, number of IB and IB rate between DED and normal subjects (P ≤ 0.035). In all three parameters, 
DLM-assisted K5M also showed a better consistency in repeated measurements than Lipiview with higher intraclass 
correlation coefficients (number of blinks: 0.841 versus 0.665; number of IB: 0.750 versus 0.564; IB rate: 0.633 
versus 0.589). More correlations between blinking parameters and DED symptoms and signs were found by DLM-
assisted K5M. Moreover, the receiver operating characteristic analysis showed the number of IB from K5M exhibiting 
the highest area under curve of 0.773.
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Background
Dry eye disease (DED) is one of the most common ocu-
lar diseases seen in the clinic. Previous studies reported 
the prevalence of DED, diagnosed with both symptoms 
and signs, to be 21%–55.7% in mainly middle-aged Asian 
adults [1–5]. However, it falls to 6.8%–34.4% in Cauca-
sians at similar ages when DED is diagnosed subjectively 
in most studies [6–10]. It was proposed that Asians pre-
sent poorer tear film stability, lipid layer quality and mei-
bomian gland dropout than Caucasians [11]. Asians are 
also more likely to have a higher proportion of incom-
plete blinking (IB) [12], which is associated with patho-
logical changes of meibomian glands and DED [13–16]. 
IB increases the exposure of ocular surface, prolongs the 
interblink interval, and thus leads to high tear osmolar-
ity and tear film instability. IB could also disturb the mei-
bomian lipid flow, making the tear film more vulnerable 
[16–19].

The number of IB and IB rate are the most common 
blinking parameters when evaluating the blinking pat-
terns in DED [20–22]. It was reported that IB was related 
to ocular surface staining score and tear break-up time 
[22], suggesting the indication of DED diagnosis. Blinking 
is a complicated process since a variety of physiological 
and psychological factors are involved, so the record-
ing of blinking has strict requirements on light source, 
light intensity, as well as the surrounding conditions. The 
analysis of blinking is not easy since minute movements 
can only be captured by highly-sensitive equipment. Cur-
rently, Lipiview (Johnson & Johnson Vision, Jackson-
ville, FL, USA) is an option for researchers to perform an 
objective evaluation of blinking patterns. Based on a 20-s 
video with a frame rate at 30 frames per second (FPS), it 
can generate a blinking profile and automatically calcu-
late the number of blinks and IBs [22]. However, there are 
also some limitations that restrict its wide application: 
Lipiview uses flashing white light during the blinking 
examination, which may interfere with the spontaneous 
blinking activity [23]; moreover, the blinking video only 
lasts 20  s which may be not long enough to record the 
blinking pattern accurately since blinking activity fluc-
tuates with time; lastly, it is unaffordable for most basic 
ophthalmic healthcare due to its high overhead cost.

There are studies using deep learning method to detect 
blinking completeness on full face images [24, 25]. Our 
recent publications also established a deep learning 

model (DLM) for blinking analysis on eye blinking images 
[26, 27]. It can analyze the blinking video recorded by 
Keratograph 5M (K5M; Oculus Optikgeräte GmbH, Wet-
zlar, Germany) which uses stable illumination and the 
recording time is not limited. In this study, we aimed to 
compare the DLM-assisted K5M system with Lipiview in 
detecting blinking parameters, as well as their practicality 
in the diagnosis of DED.

Methods
Participants
This cross-sectional observational study was approved 
by the institutional research ethics committee of the Eye 
Hospital of Wenzhou Medical University (2019-216-
k-193) and adhered to the tenets of the Declaration of 
Helsinki. Written consent was obtained from all partici-
pants before examinations. A total of 35 DED patients 
and 35 age- and gender-matched normal controls (NC) 
were recruited at the Eye Hospital of Wenzhou Medi-
cal University. All participants were 18–35 years old to 
minimize the impact of age on blinking patterns [28]. The 
diagnostic criteria of DED were ocular surface disease 
index (OSDI) score ≥ 13 [29], and having one of the fol-
lowing signs: tear film break-up time ≤ 5  s or Schirmer’s 
I test (SIT) < 10  mm/5 mins, which was consistent with 
the Asia Dry Eye Society’s criteria [30]. Exclusion criteria 
included previous ocular trauma, ocular surgeries, active 
ocular diseases except for DED, eyelid diseases, wearing 
contact lens within one week before examinations, use 
of eye drops (except for preservative-free artificial tears 
more than 4 h before examination) and systemic medica-
tion, and pregnancy.

Examinations
All examinations were conducted by two examiners (BF 
and BH), and a 5-min break were set between two tests. 
Participants were randomly assigned to one examiner 
who completed all tests after enrollment. The OSDI 
questionnaire was completed by interview to assess the 
symptomology first. Then, examinations were conducted 
in sequence: blinking assessments, tear meniscus height 
(TMH), non-invasive tear film break-up time (NIBUT), 
fluorescein tear film break-up time (FBUT), fluorescein 
corneal staining (FCS), SIT, and meibography.

Blinking assessments were conducted in the same room 
equipped with an adjustable light emitting diode, and 

Conclusions DLM-assisted K5M is a useful tool to analyze blinking videos and detect abnormal blinking patterns, 
especially in distinguishing DED patients from normal subjects. Large sample investigations are therefore warranted 
to assess its clinical utility before implementation.
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illumination was fixed at 100  lux. Blinking assessments 
with Lipiview and K5M were performed on both eyes in 
a randomized order. K5M was set at “New picture/video” 
mode with conditions as Placido white 40, inner ring 50, 
fixation 20 in illumination, 0.5 magnification, high frame 
rate (30 FPS) and B/W (Black/White), which would 
provide a bright white light of around 300  lux. A 1-min 
blinking video was recorded for each eye.

The previously established DLM for blinking analy-
sis was introduced in the Additional file 1: Appendix S1 
(Fig.  1). Before applying it in the current research, the 
segmentation performance of DLM were assessed on 

the new dataset consisting of 140 eyes. Blinking param-
eters generated from the DLM were also compared to the 
manually counted ones. The validation results are given 
in the Additional file 1: Appendix S1.

Lipiview uses a flashing white light which forms an 
interference pattern on tear film, to detect lipid layer 
thickness (LLT). At the same time, a built-in camera 
records a 30 FPS 20-s video of the tear film, and videos 
with a conformance factor over 0.7 were saved for blink-
ing analysis [31]. The generated number of blinks and 
incomplete blinking were divided by 20 s (1/3 mins) for a 
frequency of per minute.

Fig. 1 Deep learning model (DLM) analysis system of Keratograph 5M (K5M) recorded blinking video. a The interpalpebral zone is painted green 
according to the segmentation from DLM, and the vertical blue line indicates the maximum interpalpebral height (IPH) in this frame. The value 
of IPH in every frame is used to generate a blinking curve (b, c). b and c are the blinking curves from a normal control and a dry eye disease patient, 
respectively. The dotted red line represents the base value of IPH, and the red star marks each blinking
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TMH and NIBUT were evaluated using K5M. An 
image was taken at 1.0× magnification under infrared 
light after two blinks, and TMH was measured on the 
lower tear meniscus below the pupil area. NIBUT was 
reported as the time period from the last blinking to 
the appearance of the first distortion, which was moni-
tored on the grid reflection on tear film and averaged by 
three measurements (Supplementary video in Additional 
file 2).

FBUT and corneal staining were evaluated using silt-
lamp microscope with 2% sodium fluorescein. FBUT 
was counted using a stopwatch, defined as the time taken 
after blinking twice for the first dry spot was observed on 
the tear film under Cobalt-blue light, and three measure-
ments were averaged. FCS was assessed according to the 
Oxford Grading System under a yellow filter. Five areas 
of the cornea were graded individually from 0 to 5, with a 
total score ranging from 0 to 25 [32]. SIT was performed 
without anesthesia using a sterile strip with phenol red. 
The strip was placed in the outer one-third of the palpe-
bral conjunctiva for 5 min with eyes closed. Meibography 
was evaluated at last by K5M. Images of both upper and 
lower meibomian glands were taken under infrared light, 
and the proportion of meibomian gland loss was graded 
according to Pult’s meiboscale [33].

Statistics
Statistical analysis was performed with SPSS version 21.0 
(SPSS, Inc., Chicago, IL, USA) and Prism 8.0 (Graph-
Pad Software Inc, California, USA). Sample size was 
calculated with a significance level of 0.05 and power 
of 0.9. According to the difference of incomplete blink-
ing rate in a previous study [26], a minimum of 28 par-
ticipants was necessary for each group. Finally, 35 
participants in each group were recruited. Kolmogorov-
Smirnov test was used to determine the normality of 
data (P > 0.05). Bland-Altman analysis was performed 
to evaluate the consistency between the devices and 
measurements [34]. Blinking parameters from Lipiview 
were set as a gold standard, and the intra-individual 
biological variation  (CVI) and inter-individual biologi-
cal variation  (CVG) were calculated. A minimum bias 
for Bland-Altman analysis can be derived as follows: 
Minimum Bias (%) = 0.375× CV

2
I
+ CV

2
G

0.5 . Intra-
class correlation coefficient (ICC) of blinking parameters 
from the right and left eyes were calculated to evaluate 
the measurement consistency of Lipiview and DLM-
assisted K5M on the basis that the two eyes from a sin-
gle person have the same blinking pattern. Difference of 
evaluations between DED patients and NC were calcu-
lated using generalized estimating equations. The blink-
ing parameters from different devices in groups were 
also compared using generalized estimating equations. 

Sex ratios between groups were compared using the χ2 
test. Pearson’s or Spearman’s rank correlation was per-
formed to assess the correlations between parameters. 
Receiver operating characteristic (ROC) curve was used 
to evaluate the diagnostic efficiency of blinking param-
eters, based on the diagnosis of each DED patient and the 
examination results of the right eye. A two-tailed P value 
less than 0.05 was considered as significant.

Result
A total of 140 eyes of 70 participants (35 DED, 35 NC) 
were enrolled. The age and sex ratio showed no difference 
between groups (P ≥ 0.342). The DED group presented a 
higher OSDI score, shorter NIBUT and FBUT, lower SIT 
value, and higher FCS (P ≤ 0.023) compared with the NC 
group. However, no statistical differences were found in 
TMH, meiboscore, or LLT (P ≥ 0.123) between the two 
groups (Table 1).

Agreements between devices on measuring blinking 
parameters were evaluated using the Bland-Altman plot. 
The limits of agreements were wider than previously set 
minimum bias in both number of blinks and number of 
IB, and Lipiview captured a smaller number of blinks and 
higher number of IB than DLM-assisted K5M (Fig.  2). 
The consistency of measurements was also evaluated 
in both devices. The DLM-assisted K5M demonstrated 
higher ICC values in all three parameters (Fig. 3).

Number of blinks, number of IB and IB rate were 
compared between both groups and devices using 
generalized estimating equations (Fig.  4). Interaction 
effects of devices and disease were significant when 
comparing IB rate between subgroups (P = 0.048). 
However, no interaction effects were found in comparison 
of number of blinks and number of IB (P ≥ 0.208). The 

Table 1 Demographic information and clinical assessments of 
participants

The data are presented as mean ± standard deviation, or median (interquartile 
range). Age, gender and OSDI score are compared between 35 DED subjects 
and 35 NC. NIBUT, FBUT, SIT and FCS are compared between 70 eyes from DED 
subjects and 70 eyes from NC

DED = dry eye disease; n = number of eyes; NC = normal controls; M = male; 
F = female; OSDI = ocular surface disease index; NIBUT = non-invasive tear 
break-up time; FBUT = fluorescein tear film break-up time; SIT = Schirmer’s I test; 
FCS = fluorescein corneal staining

Parameter DED (n = 70) NC (n = 70) P value

Age (years) 25 (23–25) 24 (23–24) 0.761

Gender (M:F) 4:31 8:27 0.342

OSDI score 29.35 ± 9.91 4.67 ± 3.86 < 0.001

NIBUT (s) 7.84 ± 4.31 14.97 ± 5.74 < 0.001

FBUT (s) 3 (2.75–4) 8 (6–10) < 0.001

SIT (mm) 7 (4–14) 12 (5–25) 0.023

FCS 0 (0–1) 0 (0–0) 0.003
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main effect of device showed that videos from Lipiview 
gave a higher number of IB in all participants than that 
from DLM-assisted K5M (P = 0.006), as well as a higher 
IB rate (P < 0.001). The number of blinks from two devices 
were similar in both DED and NC subgroups (P ≥ 0.388). 
The number of IB from Lipiview were higher than that 
from DLM-assisted K5M in the NC group (P = 0.006), 
while it was not different in the DED group (P = 0.269). 

Besides, Lipiview demonstrated a higher IB rate in both 
the DED and NC groups, compared with the DLM-
assisted K5M (P ≤ 0.047).

When comparing the ability to distinguish DED from 
normal subjects, DLM-assisted K5M captured a signifi-
cantly higher number of blinks, number of IB, and IB rate 
in DED patients than those of NC (P ≥ 0.035). In contrast, 
Lipiview failed to show a difference in IB rate between 
the DED and NC groups (P ≥ 0.055; Fig. 5; Table 2).

Pearson’s correlation coefficient and Spearman’s rank 
correlation coefficient were calculated to evaluate the cor-
relations between blinking parameters and DED meas-
urements. The results from DLM-assisted K5M showed 
that the number of blinks was associated with NIBUT, 
FBUT, SIT, and LLT (R ≥ 0.180, P ≤ 0.033); and the num-
ber of IB and IB rate were relative to NIBUT, FBUT, FCS 
and other values (R ≥ 0.168, P ≤ 0.046; Fig.  6). However, 
the blinking parameters obtained from Lipiview showed 
fewer correlations with clinical evaluations; only number 
of blinks and number of IB were related to NIBUT and 
the maximum LLT (R ≥ 0.190, P ≤ 0.024).

Finally, ROC curves were generated from the right 
eyes of 35 DED patients to compare the efficiency of 
DED diagnosis between the two devices. Using the single 
diagnostic criterion of the number of IB from K5M with 
a cut-off point greater than eight yielded a sensitivity of 
74.29% and specificity of 71.43%. Among all parameters 
between the two devices, the number of IB from K5M 
exhibited the highest area under curve (AUC) value of 
0.773, which was not of significant differences neverthe-
less (P ≥ 0.18; Fig. 7; Table 3).

Fig. 2 Bland-Altman plots showing the agreement in blinking parameters between devices. a The Bland-Altman analysis of frequency of blinks; 
b The Bland-Altman analysis of frequency of incomplete blinks. The limits of agreement were larger than the previous set minimum bias, and low 
consistency between devices were confirmed. K5M, Keratograph 5M

Fig. 3 The consistency of measurement from K5M and Lipiview. The 
two eyes in one person have the same blinking pattern, and intraclass 
correlation coefficient (ICC) were calculated based on parameters 
from two eyes. K5M presented better consistency with higher ICC 
value in all measurements. IB, incomplete blinking; K5M, Keratograph 
5M
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Fig. 4 Comparison of blinking parameters between Lipiview and DLM-assisted K5M in the DED group, NC group and all participants. a, b and c 
showed the difference of number of blinks, number of IB and IB rate obtained from Lipiview and K5M in different groups, respectively. Lipiview 
captured higher number of IB and IB rate in all participants. Especially for the NC group, Lipiview exerts much greater values for the number of IB, 
and IB rate than DLM-assisted K5M. * indicates P < 0.05. DED, dry eye disease; NC, normal controls; DLM, deep learning model; K5M, Keratograph 5M; 
IB, incomplete blinking

Fig. 5 Comparison of blinking parameters between DED and NC with Lipiview (a) and DLM-assisted K5M (b). K5M revealed statistical differences 
in the number of blinks, number of IB and IB rate between the two groups, while Lipiview only showed the difference in the former two. * indicates 
P < 0.05. DED, dry eye disease; NC, normal controls; DLM, deep learning model; K5M, Keratograph 5M; IB, incomplete blinking
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Discussion
Here, we found that blinking parameters generated from 
DLM-assisted K5M presented some differences vs. those 
from Lipiview with the same recording frame rate (30 
FPS), which mainly lie in the higher sensitivity of DLM-
assisted K5M to distinguish DED patients from normal 
subjects, and its more significant associations with clini-
cal DED symptoms and signs.

Previous studies demonstrated that sagittal 
misalignment commonly exists in blinkings, which was 
termed “overblink”. Blinkings could be identified from 
an inferior-temporal view, and classified into incomplete 
ones, almost complete ones, and complete ones 
according to the degree of sagittal misalignment [35–38]. 
Lipiview detects blinks using a camera in the front view 
within 20  s, while K5M also records blinks in the front 

view but without limitation of time. The automatically 
classified blinks from Lipiview and DLM-classified blinks 
from K5M actually use the same definition of complete 
blinking containing both “almost complete blinks” and 
“complete blinks” [35]. However, Lipiview tends to confer 
a higher value of blinking compared with the DLM-
assisted K5M. As a currently commercially available 
device for blinking analysis, Lipiview was reported to 
have the ability to provide blinking parameters related 
to diagnostic assessments of DED [39]. However, the 
flashing light it uses and the 20-s limit of recording 
time made the results vulnerable since the physiological 
process of spontaneous blinking could be violated. On 
the contrary, the K5M eliminates these limitations by 
using a stable moderate white illumination (300  lux) 
and unlimited recording time. Furthermore, we have 
established a DLM for accurate identification of blinking 

Table 2 Comparison of blinking parameters from Lipiview and K5M between DED and NC

The data are presented in median (interquartile range)

DED = dry eye disease; NC = normal controls; IB = incomplete blinking; DLM = deep learning machine; K5M = Keratograph 5M

Device Parameter DED NC P value

Lipiview Number of blinks  (min−1) 21 (12–24) 15 (9–21) 0.055

Number of IB  (min−1) 12 (6–18) 9 (3–15) 0.083

IB rate (%) 95.45 (50–100) 83.33 (29.33–100) 0.366

DLM-assisted K5M Number of blinks  (min−1) 20.5 (12.75–28.25) 15 (10.75–21) 0.035

Number of IB  (min−1) 11.5 (6–18) 5 (1–9) 0.001

IB rate (%) 63.06 (44.81–85.71) 32.67 (9.89–69.06) < 0.001

Fig. 6 Heatmap of the correlation between clinical assessments and blinking parameters. Number of blinks, number of IB and IB rate were relative 
to NIBUT, FBUT, and other values. The stars in the table cells represent P values for the association test. * indicates P < 0.05, ** indicates P < 0.01 
and *** indicates P < 0.001. IB, incomplete blinking; NIBUT, non-invasive tear film break-up time; FBUT, fluorescein tear film break-up time; TMH, tear 
meniscus height; FCS, fluorescein corneal staining; SIT, Schirmer’s I test; LLT, lipid layer thickness
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parameters for K5M-recorded videos in our recent 
reports [26, 40].

The current results showed that IB, as a potential 
biomarker for DED, were much higher in Lipiview than 
those obtained from the DLM-assisted K5M for the same 
subjects. The main reason may lie in the intense flashing 
light that Lipiview uses during blinking recording. 
It was previously reported that there is a functional 
relation between the visual cortex and the trigeminal 
nociceptive system, and flash light stimulation activated 
the visual cortex and triggered nociceptive blink reflex 
pronouncedly in healthy subjects [41]. Moreover, 
exposure to intense luminance could activate trigeminal 
nerve activity, increase parasympathetic outflow to the 
eye and cause ocular discomfort [42, 43]. Therefore, it 
is quite possible that the flashlight from Lipiview exerts 
an impact on the subjective comfort and interferes with 
the spontaneous blinking process. In fact, Lipiview was 
designed mainly for the quantitative measurement of 
LLT, which needs to use flashlight to form an interference 

effect on tear film. Thus, the blink analysis is not an 
advantage of it. However, the two devices in the current 
study both applied a certain testing condition, which 
might influence the spontaneous blinking process. 
Because the viewing distance, direction of light source 
and other settings of the devices were also different from 
the natural condition, these might have varied effects 
on blinking pattern. Accordingly, it is not confirmed yet 
in the current study whether Lipiview or DLM-assisted 
K5M can provide more accurate blinking parameters. 
Further investigations are needed to explore the impacts 
of illuminance, recording frame rate and recording time 
on blinking pattern for establishing a practical blinking 
analysis system. Novel DLM would also be developed to 
facilitate the blinking analysis system better in the near 
future.

It has been recognized in the past few years that 
DED patients have more IB than normal subjects at 
rest, and abnormal blinking pattern were related to the 
pathological change on the ocular surface [15, 44, 45]. 

Fig. 7 Receiver operating characteristic (ROC) curve based on parameters from Lipiview (a) and K5M (b). The parameters from K5M had higher 
sensitivity and specificity compared to Lipiview. No statistical difference was discovered between AUC. K5M, Keratograph 5M; IB, incomplete 
blinking; AUC, area under curve

Table 3 Diagnostic efficiency of blinking parameters in DED from Lipiview and K5M

DED = dry eye disease; AUC  = area under curve; SE = standard error; CI = confidence interval; K5M = Keratograph 5M; IB = incomplete blinking

Parameter Cut-off value AUC SE P value 95% CI Sensitivity (%) Specificity (%)

Number of blinks Lipiview > 18 0.659 0.065 0.022 (0.532, 0.786) 51.43 74.29

K5M > 21 0.650 0.067 0.031 (0.518, 0.781) 51.43 80.00

Number of IB Lipiview > 9 0.662 0.065 0.020 (0.535, 0.789) 65.71 60.00

K5M > 8 0.773 0.056 < 0.001 (0.664, 0.883) 74.29 71.43

IB rate Lipiview > 0.25 0.531 0.070 0.651 (0.395, 0.668) 88.57 25.71

K5M > 0.389 0.716 0.063 0.002 (0.593, 0.839) 85.71 57.14
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Our current results demonstrated that the DLM-assisted 
K5M is more sensitive in distinguishing the abnormal 
blinking pattern from DED to normal subjects, which is 
of clinical value in the diagnosis of DED. Its consistency 
in acquiring blinking parameters was also better than 
Lipiview according to the uniformity of the parameters 
between the right and left eyes. Besides, it has been 
demonstrated that the spontaneous blinking activity 
presents a time-related reduction in 5 min [46]. A 20-s 
blinking video in Lipiview would cause more fluctuating 
results in blinking analysis, while K5M has an obvious 
advantage of unlimited recording time.

Our results also showed that the number of IB from DLM-
assisted K5M, which showed the highest AUC although 
without statistical difference compared to other parameters, 
may help to diagnose DED. Nevertheless, the current sam-
ple size for ROC calculation may be inadequate, further 
validation from larger samples is needed. Increased IBs lead 
to unstable tear film and tear hyperosmolarity, which then 
aggravates DED progression [47, 48]. Tear hyperosmolarity 
induces ROS overgeneration, NLRP3 inflammation activa-
tion and inflammatory cytokines release [49–51], which is 
involved in the vicious circle of DED.

As a practicable management of DED, blink exercise 
has been proposed for years for abnormal blinking pat-
terns in DED. Previous studies reported that the sympto-
mology and signs of DED could be improved significantly 
after blinking exercise [52–54], but whether blinking 
exercise has a long-term effect, or how the blinking pat-
tern was altered remains unknown. The current study 
may also help to understand the importance of blink-
ing exercise and blinking pattern monitoring in DED 
patients. However, limitations also exist in the current 
study. The current DLM is trained with a dataset consist-
ing of 1019 images, and it needs further improvement 
with larger dataset containing heterogeneous blinking 
images. Furthermore, the participants are mostly young 
adults, who may represent different blinking patterns 
from older DED patients. Additionally, the potential bias 
from the observers in DLM training and validation, and 
the unaccounted variables influencing the blinking pro-
cess are somehow inevitable.

Conclusion
We demonstrate here that the DLM-assisted K5M 
is a useful tool to analyze the blinking process and 
reveal abnormal blinking patterns. K5M provides a 
physiologically more comfortable recording condition 
than Lipiview, and the application of DLM made 
the analysis more objective and efficient, especially 
in distinguishing the DED patients from normal 
subjects. Therefore, the DLM-assisted K5M has the 

potential to analyze blinking for DED diagnosis; larger 
trials are warranted to determine its efficacy before 
implementation in routine practice.
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