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Abstract 

Background:  To study the association between dynamic iris change and primary angle-closure disease (PACD) with 
anterior segment optical coherence tomography (AS-OCT) videos and develop an automated deep learning system 
for angle-closure screening as well as validate its performance.

Methods:  A total of 369 AS-OCT videos (19,940 frames)—159 angle-closure subjects and 210 normal controls (two 
datasets using different AS-OCT capturing devices)—were included. The correlation between iris changes (pupil 
constriction) and PACD was analyzed based on dynamic clinical parameters (pupil diameter) under the guidance of a 
senior ophthalmologist. A temporal network was then developed to learn discriminative temporal features from the 
videos. The datasets were randomly split into training, and test sets and fivefold stratified cross-validation were used 
to evaluate the performance.

Results:  For dynamic clinical parameter evaluation, the mean velocity of pupil constriction (VPC) was significantly 
lower in angle-closure eyes (0.470 mm/s) than in normal eyes (0.571 mm/s) (P < 0.001), as was the acceleration of 
pupil constriction (APC, 3.512 mm/s2 vs. 5.256 mm/s2; P < 0.001). For our temporal network, the areas under the curve 
of the system using AS-OCT images, original AS-OCT videos, and aligned AS-OCT videos were 0.766 (95% CI: 0.610–
0.923) vs. 0.820 (95% CI: 0.680–0.961) vs. 0.905 (95% CI: 0.802–1.000) (for Casia dataset) and 0.767 (95% CI: 0.620–0.914) 
vs. 0.837 (95% CI: 0.713–0.961) vs. 0.919 (95% CI: 0.831–1.000) (for Zeiss dataset).

Conclusions:  The results showed, comparatively, that the iris of angle-closure eyes stretches less in response to 
illumination than in normal eyes. Furthermore, the dynamic feature of iris motion could assist in angle-closure 
classification.
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Background
Glaucoma is an eye disease with extremely complex eti-
ology, ranking second among the four major blinding 
eye diseases. Globally, due to the aging of the popula-
tion, the number of glaucoma patients (40–80 years old) 
is increasing every year. By 2040, it is estimated that 112 
million people in the world will be affected by this dis-
ease [1, 2]. For Asians, primary angle-closure glaucoma 
(PACG) is more prevalent, which is defined as apposi-
tional or synechia closure of the anterior chamber angle 
and can lead to aqueous outflow obstruction and raised 
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intraocular pressure (IOP) with glaucomatous optic 
neuropathy [2]. Fortunately, it can be observed by ante-
rior segment optical coherence tomography (AS-OCT), 
which is a fast, efficient, and non-contact in  vivo imag-
ing device. It is used for quantitative measurement of 
anterior chamber structural parameters such as anterior 
segment angle (ACA), iris, cornea, etc. [3]. Therefore, the 
high prevalence of PACG in Asia underlies the need for 
an effective screening tool (such as AS-OCT) for early 
screening of the disease.

The major mechanism implicated in PACG is pupillary 
block, which is characterized by increased resistance to 
aqueous flow from the posterior to the anterior chamber 
at the level of the lens-iris interface [4]. There are several 
pieces of research to explore the association between 
PACG and static anatomical parameters such as the 
depth of the anterior segment in AS-OCT images [5–7]. 
However, the differences in iridopupillary dynamics may 
play a role in the pathogenesis of angle closure [8], and 
thus the effect of pupillary block can be presented more 
discriminatively and fully when the iris of the anterior 
segment is in dynamic motion. Quigley et  al. [9] found 
that the decrease of iris cross-sectional area with pupil 
enlargement may be a risk factor for angle closure. Naray-
anaswamy et al. [10] observed changes of the iris volume 
under physiological dilation for several types of PACG 
and found that the iris volume of chronic angle-closure 
glaucoma is decreased, while that of the contralateral eye 
of acute angle-closure glaucoma is almost unchanged. 
Comparable results are also reported in southern India: 
iris area and iris volume decrease in normal eyes and 
primary angle-closure eyes with dilated pupil, but the 
reduction of iris volume in primary angle-closure eyes is 
significantly lower than that in normal eyes [11].

Besides, Seager et  al. [12] found that the baseline iris 
area under dark conditions in the Chinese population is 
smaller than that in European and African populations, 
but the decrease of iris area with pupil dilation is smaller 
than that in the latter, which may contribute to the high 
prevalence of acute angle-closure in China. In vivo imag-
ing of iris cross-sectional area showed that there is no 
significant change in iris volume after iris dilation for 
patients with PACG [9, 13]. This phenomenon indicated 
that the iris is spongy and compressible in the eyes of 
healthy and primary open-angle glaucoma (POAG) sub-
jects, but it is incompressible in the eyes of PACG and 
suspected angle-closure subjects [14]. Lifton et  al. [15] 
found that beneficial angle widening effects of transition-
ing from dark to light are attenuated in eyes with primary 
angle-closure disease (PACD), which appears related to 
aberrant dark to light change in anterior chamber width 
(ACW). To further verify their correlation, researchers 
studied the movement features of angle-closure eyes and 

angle-opening eyes under standard and dark conditions. 
Results showed the angle-closure group has a slower 
iris contraction speed in the reflection of light, which 
becomes faster after receiving laser peripheral iridotomy 
treatment [8, 16, 17].

All the above studies found that pupil constriction 
is an independent risk factor for PACG. Therefore, in 
this paper, we further studied the correlation between 
dynamic clinical parameters and PACG, adopting the iris 
movement videos captured in real-time video record-
ings of AS-OCT under changing illumination conditions, 
for early PACG screening. Moreover, for automatically 
extracting dynamic discriminative features to recognize 
angle-closure eyes, a deep learning-based temporal clas-
sifier network was proposed to detect angle-closure sta-
tus using the AS-OCT video datasets.

Although several angle-closure classification methods 
are based on the sequence dataset collected in both dark 
and bright illumination conditions [18–20], the data-
sets and methods are completely different from ours. 
For datasets, the videos in our datasets capture the iris 
motion when illumination changes over time, while the 
datasets in those studies [18–20] are collected at a sin-
gle moment under a dark or bright condition without any 
dynamic information. For methods, the deep network 
used in this paper focuses on learning the temporal infor-
mation of iris dynamics over time, while the methods 
used in previous works mainly learn the spatial informa-
tion of static or sequence images simultaneously, which 
ignore the dynamic information. Our datasets and corre-
sponding methods are also innovative and have not been 
used/studied in previous works.

Methods
Study design and participants
Subjects were recruited from the outpatient and inpatient 
departments of Joint Shantou International Eye Centre of 
Shantou University and the Chinese University of Hong 
Kong, which included patients and volunteers over the 
age of 40 years. The study conducted adhered to the ten-
ets of the Declaration of Helsinki and had the approval of 
the institutional review board (EC 20121123(5)-P15 and 
SUMC2013XM-0070). Written informed consent was 
obtained from all subjects.

All enrolled subjects were stratified into two categories: 
angle-closure and normal. The normal group consisted 
of age-related cataract patients and normal volunteers. 
A detailed medical history was collected for all patients, 
and they each underwent an ophthalmological examina-
tion. Details of the groups are as follows:

1.	 Angle-closure group: a glaucoma specialist (CZ) per-
formed the gonioscopy exam in a dark room by using 
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a Goldmann 2-mirror lens (Haag-Streit AG, Bern, 
Switzerland) at 16 × magnification. The angle was 
graded using the modified Shaffer grading system 
(grade 0 = no structures visible; grade 1 = Schwalbe’s 
line visible; grade 2 = anterior trabecular meshwork 
visible; grade 3 = posterior trabecular meshwork or 
scleral spur visible; grade 4 = ciliary body visible). 
Angle-closure was defined as three or more quad-
rants in which pigmented trabecular meshwork could 
not be visualized [21]. More specifics [8, 21–24] are 
provided in the supplemental material.

2.	 Normal group: Subjects who had IOP ≤ 21  mmHg, 
normal optic nerve, normal visual field, and those 
with a family history of glaucoma were included. In 
the current study, we defined the normal visual field 
as follows: a mean deviation (MD) and pattern stand-
ard deviation (PSD) within 95% confidence limits and 
a glaucoma hemifield test (GHT) result within nor-
mal limits [25].

Additionally, subjects were excluded if they: (1) have a 
history of intraocular surgery and ocular trauma; (2) have 
a disease or have taken systemic drugs which affect light 
reflection; (3) have pterygium; (4) cannot cooperate dur-
ing the examination.

AS‑OCT videos acquisition
Our AS-OCT video datasets were collected by two 
devices: swept-source OCT [26] (Casia SS-1000 OCT, 
Tomey, Nagoya, Japan) and Visante OCT [27] (Visante 
OCT, Model 1000, software version 2.1; Carl Zeiss 
Meditec).

The Casia swept-source OCT is a Fourier-domain 
swept-source OCT designed specifically for imaging 
the anterior segment. With a substantial improvement 
in scan speed (30,000 A-scans per second), the anterior 
chamber angles can be imaged in 128 cross-sections 
(each with 512 A-scans) 360° around the anterior seg-
ment in 2.4  s [26]. For our dataset collection, the frame 
rate is set to 8.

The Zeiss Visante OCT is a noncontact optical coher-
ence tomographic system that uses 1310 nm wavelength 
light to capture high-resolution cross-sectional images 
of the ocular anterior segment [27]. It allows real-time 
imaging of the anterior chamber with a scan speed of 
2000 A-scans per second. The scan acquisition time is 
0.125 s per line for the anterior segment single scan (lim-
bus to limbus; eight frames per second). Video-recording 
software (Camtasia 6.0; TechSmith Corporation, Oke-
mos, MI) at the default recording rate of 14 frames per 
second was utilized to capture the iris dynamic changes 
in response to dark-light illumination.

The process of AS-OCT video acquisition was the 
same for both devices. Specifically, recording of the AS-
OCT videos began one minute after dark adaption using 
a standard protocol. The eye was then illuminated by a 
pen torchlight (approximately 1700  lx). The pupil and 
anterior chamber changes from dilatation in the dark to 
constriction in the light were recorded. A single ophthal-
mologist performed all AS-OCT testing. The process was 
repeated if any abnormal eye movement occurred.

AS‑OCT video datasets
For each video, the ground-truth label of normal or 
angle-closure was determined from the majority diag-
nosis of a senior ophthalmologist. For the Casia dataset, 
all the videos were captured along the eye’s optical axis 
by the swept-source OCT. The whole dataset consisted 
of 175 videos, including 94 videos of normal eyes and 81 
videos of eyes with angle closure. The resolution of video 
frames was 1644 × 1000. For the Zeiss dataset, all the vid-
eos were captured by the Visante OCT. The whole dataset 
consisted of 194 videos, including 116 videos of normal 
eyes and 78 videos of eyes with angle closure. The resolu-
tion of video frames was 600 × 300. The size of the video 
frames to be entered into the deep learning network were 
fixed at 224 × 224.

AS‑OCT image dataset
To prove the superiority of classification based on the 
AS-OCT videos, we compared our framework with the 
present algorithm based on single AS-OCT images. We 
selected frames from the beginning and end of our vid-
eos taken in a dark environment which is the same as the 
present classification algorithms’ datasets. For the Casia 
image dataset, the selected images were combined into 
a new training set with a total of 2680 AS-OCT images 
(1480 angle-closure and 1200 normal images) with the 
same distribution as the video dataset. For the Zeiss 
image dataset, it included 3880 AS-OCT images (1560 
angle-closure and 2320 normal images).

Measurements of velocity and acceleration of iris 
movement
To measure iris changes in response to illumination using 
angle-closure and normal AS-OCT videos, this study 
adopted the velocity and acceleration of pupil diameter 
(PD) over time (Fig. 1). The changes of PD could reflect 
the motion of the iris directly. For improved evaluation of 
the pupil contraction’s association with angle closure, we 
utilized five parameters to describe the dynamic features: 
maximum acceleration of pupil constriction (APCmax), 
fitting acceleration of pupil constriction (APCfitting), 
average acceleration of pupil constriction (APCmean), 
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maximum velocity of pupil constriction (VPCmax) and 
average velocity of pupil constriction (VPCmean).

Here, we marked the pupillary margin manually under 
the guidance of a senior ophthalmologist, which is the 
inner border of the iris, delineating the pupil [28]. For 
each video sample, we calculated the transient velocities 
and accelerations with adjacent frames and then got the 
APCmax, APCmean, VPCmax, and VPCmean. To obtain the 
iris dynamic parameters from the whole moving process, 
we calculated the fitting acceleration of pupil constriction 
modeling the curve of motion. Since changes in the PD 
were nonlinear over the time series (frame sequences) 
between the onset and the end of pupil contraction [23], 
a standard second-order polynomial (or quadratic func-
tion) could be fitted to the data over a video as shown in 
Fig. 1. The fitting model was defined as follows:

where a , b and c are the coefficients of the quadratic func-
tion. According to the kinematics model definition, the 
APCfitting is equivalent to 2a (mm/s2), as:

It was worth noting that the curve opening was dif-
ferent in size for both videos, specifically, for the curve 
corresponding to the normal eye which was narrower. 
Changes of PD in the normal eye were shown to be faster.

Angle‑closure classification system
Due to the impact of involuntary eye movement and 
improper placement of the optical axis of the eye, the 
misalignments existing between consecutive video 

ypd = ax2 + bx + c

APCfitting = 2a

frames may contain movements of the cornea, result-
ing in the video frame sequence being unreliable which 
greatly affects the classification validation for iris 
motion [29]. To reduce video jitter, under the guidance 
of a senior ophthalmologist, we marked the corner of 
the ACA for all video frames and aligned the consecu-
tive frames with the marked points. Specifically, we first 
calculated the rotation and translation vectors based on 
the marked points between frame A (the first frame of 
a video) and frame B (another video frame). Then, the 
vectors would tell us how much frame B needed to be 
translated and rotated to align with frame A. Based on 
the vectors, frame B can be transformed to the position 
of frame A. By repeating these steps for all video frames, 
the ACAs for one video could be aligned to the same 
position.

To illustrate the auxiliary effect of dynamic informa-
tion on angle-closure classification, we first learned 
features from AS-OCT images in the videos frame by 
frame with ResNet [30], then long short-term memory 
(LSTM) [31] layers were employed to extract temporal 
information from video frame sequences. ResNet has 
a strong ability to extract image features and reduce 
the amount of computation during training. The main 
difference between the LSTM network and convolu-
tional neural network (CNN) is that LSTM can keep 
information continuously by encoding state and mod-
eling the long-term dependencies between the feature 
graphs along the time axis. In this paper, a LSTM layer 
with batch normalization and 512 hidden units [32] 
was positioned after the last average pooling layer of a 
ResNet model. We then added a fully connected layer 
on top of the output of the LSTM to perform multi-
class classification [33], as shown in Fig. 2.

Fig. 1  Illustration of a video frame and pupil diameter (PD) changing trends for normal and angle-closure samples. a Illustration of an anterior 
segment optical coherence tomography (AS-OCT) video frame; b PD value changes of a normal AS-OCT video with the frame sequence; c PD value 
changes of an angle-closure AS-OCT video with the frame sequence. The fitted trend line (red curve) is a second-order polynomial function that is 
denoted on the chart
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Results
Our experiments were divided into two parts to evalu-
ate iris changes in response to illumination. First, we 
calculated the five dynamic parameters using AS-OCT 
videos in angle-closure and normal eyes and evaluated 
their association with angle closure. Then, an angle-clo-
sure classification system was proposed to classify angle-
closure states by modeling both motion and appearance 
changes in the AS-OCT video datasets.

Dynamic parameter analysis
To reflect the difference of the iris changes in response 
to illumination with more samples, we combined the two 
datasets to build a new angle-closure group and normal 
angle group. Thus, we employed a dataset including 369 
videos with 210 videos of normal eyes and 159 videos 
of eyes with angle closure. The distributions of the five 
parameters for the normal and angle-closure groups are 
shown in Fig. 3, where the black vertical line in each box 
represents the median of the parameter. It was noted that 
there was an obvious difference in the medians for veloc-
ity and acceleration of pupil constriction between the two 
groups.

To further illustrate the statistical significance of the 
difference in data distributions, the independent sam-
ples t-test was employed to examine differences in 
mean values of parametric data among eyes of different 
groups. Table 1 shows the gap of the mean value of five 
parameter distributions between normal- and closure-
angle groups. During pupil constriction, all the VPCmean 
(0.470  mm/s vs. 0.571  mm/s), VPCmax (2.414  mm/s vs. 
3.802 mm/s), APCmax (14.376 mm/s2 vs. 23.188 mm/s2), 
APCmean (3.512  mm/s2 vs. 5.256  mm/s2), and APCfitting 
(0.0007  mm/s2 vs. 0.0012  mm/s2) were slower in the 
angle-closure group than in the normal group, and the 
differences were statistically significant (P < 0.001). Sam-
ple size estimation was also conducted in this study. We 
perfomed post hoc tests as they provide critical informa-
tion about sample sizes to determine whether the sam-
ple size is enough to detect statistically significant and 
clinically meaningful differences between different treat-
ment groups [34]. The power of the current study for the 
five parameters was 0.967–1.000 (high power), as shown 

in Table  1. All parameters showed good power in our 
study, and these features had differences between the two 
groups with the current sample size.

Classification results comparison
Following the clinical parameter analysis, angle-closure 
and normal samples can be distinguished by velocity 
and acceleration of pupil constriction, the ResNet-LSTM 
model can leverage temporal information to predict the 
binary classification (angle status) result. Here, we used 
fivefold stratified cross-validation on our two AS-OCT 
video datasets to evaluate the performance, which is a 
resampling procedure widely used to evaluate machine 
learning models on a limited data sample. In our study, 
each dataset was randomly split into five individual 
groups. One group was then taken as a test dataset to 
evaluate performance, while the other four groups were 
used as a training set to train the model. Finally, the 
cross-validation process was repeated five times, with 
each of the subsamples used exactly once as the test data, 
to report the average performance in our study [35], as 
shown in Table  2 and Fig.  4. We classified the angle-
closure eyes by video. To measure the performance of 
our network more comprehensively, we employed eight 
evaluation criteria: area under the receiver operating 
characteristic curve (AUC), balanced accuracy, preci-
sion, recall, F1 score, sensitivity, specificity, and Kappa 
analysis. Kappa analysis and F1 score were used to reflect 
the trade-offs between sensitivity and specificity. We 
can see that there is a gap for the specificity values of 
the two datasets, which is due to the distribution of our 
datasets. The number of normal videos is 16% more than 
the angle-closure videos for the Casia dataset, while it 
is 48.7% for the Zeiss dataset. For the Zeiss dataset, our 
network can be better trained by normal subjects and 
captured the temporal feature better compared with the 
Casia dataset. Therefore, the Zeiss dataset demonstrates 
better specificity values.

AUC provides an aggregate measure of performance 
across all possible classification thresholds. Performances 
across many different thresholds were summarized with 
an AUC with 95% confidence intervals (CIs) as shown in 
Fig. 4 and Table 2. For the Casia AS-OCT video dataset, 

Fig. 2  The pipeline of our angle-closure classification system
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the AUC for angle-closure detection using the temporal 
network was 0.820 (95% CI: 0.680–0.961) with a sensitiv-
ity of 0.833 and a specificity of 0.765. Correspondingly, 

after video alignment, the temporal network obtained 
better performance, with AUC 0.905 (CI 95%: 0.802–
1.000) with a sensitivity of 0.947 and a specificity of 0.690. 

Fig. 3  The distribution of dynamic parameters for each groups’ pupil diameter (PD). VPC, velocity of pupil constriction; APC, acceleration of pupil 
constriction

Table 1  Comparison of the mean values and standard deviation (SD) of dynamic parameters between normal and closed-angle 
groups

APCmax = maximum acceleration of pupil constriction; APCfitting = fitting acceleration of pupil constriction; APCmean = average acceleration of pupil constriction; 
VPCmax = maximum velocity of pupil constriction; VPCmean = average velocity of pupil constriction

Parameter Angle-closure, mean (SD) Normal, mean (SD) P value Power

VPCmean (mm/s) 0.4704 (0.1362) 0.5709 (0.1296) < 0.001 1.0000

VPCmax (mm/s) 2.4143 (1.0586) 3.8020 (1.0121) < 0.001 1.0000

APCmax (mm/s2) 14.3758 (8.3453) 23.1878 (12.1207) < 0.001 1.0000

APCmean (mm/s2) 3.5118 (1.5416) 5.2561 (2.4205) < 0.001 1.0000

APCfitting (mm/s2) 0.0007 (0.0011) 0.0012 (0.0014) < 0.001 0.9968
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The performance was similar for the Zeiss AS-OCT data-
set, the AUC for angle-closure detection using temporal 
network was 0.837 (95% CI: 0.713–0.961) with a sensitiv-
ity of 0.826 and a specificity of 0.813. Correspondingly, 
after video alignment, we obtained superior perfor-
mance, with AUC 0.919 (CI 95%: 0.831–1.000) with a 
sensitivity of 0.913 and a specificity of 0.933.

To compare the classification performance with the 
extracted AS-OCT image dataset (more details about 
the AS-OCT image dataset are provided in supplemen-
tal material), we employed ResNet, which was consistent 
with the feature extraction network in our temporal net-
work. The results are shown in Table 2, in which the bold 

numbers indicate optimal results. Our network-based on 
AS-OCT videos gave better evaluation metrics with an 
obvious gap.

The classification results illustrated the importance 
of global change in the iris regions for improving clas-
sification performance. The performance significantly 
improved after the video was aligned, which was mainly 
because of the negative effect of video jitter on the 
extraction of iris dynamic features. By comparing with 
the performance based on AS-OCT images, it also dem-
onstrated that the feature of iris dynamic movement 
under the dark-light-dark environment was helpful for 
the angle-closure state classification.

Table 2  Comparison of the classification performance on private anterior segment optical coherence tomography (AS-OCT) video 
datasets and image datasets

AUC​ = area under the receiver operating characteristic curve; CI = confidence interval

The bold numbers indicate optimal results

AUC (95% CI) Sensitivity Specificity Accuracy Precision Recall F1 Score Kappa

Casia dataset

 Images 0.766 (0.610–0.923) 0.790 0.750 0.771 0.771 0.771 0.771 0.539

 Original videos 0.820 (0.680–0.961) 0.833 0.765 0.800 0.801 0.800 0.800 0.599

 Aligned videos 0.905 (0.802–1.000) 0.947 0.690 0.829 0.844 0.829 0.824 0.648
Zeiss dataset

 Images 0.767 (0.620–0.914) 0.750 0.933 0.821 0.852 0.821 0.823 0.643

 Original videos 0.837 (0.713–0.961) 0.826 0.813 0.821 0.823 0.821 0.821 0.633

 Aligned videos 0.919 (0.831–1.000) 0.913 0.933 0.921 0.923 0.921 0.921 0.837

Fig. 4  Classification results of normal and closed angles for the two datasets. a Area under the receiver operating characteristic curve (AUC) results 
of Casia dataset; b AUC results of Zeiss dataset. The classifications of normal and closed angles for the two datasets are under different scenarios: 
extracted anterior segment optical coherence tomography (AS-OCT) images, with and without video alignment over two AS-OCT video datasets



Page 8 of 10Hao et al. Eye and Vision            (2022) 9:41 

Discussion
Several methods have recently been proposed to iden-
tify the normal or closed status of ACA from AS-
OCT images based on anterior chamber depth. Some 
researchers proposed computer-aided angle-closure 
screening algorithms to reduce doctors’ burdens [18–
20, 36–39]. Nongpiur et  al. [40] proposed a classifica-
tion algorithm based on stepwise logistic regression, 
which combined six parameters obtained from AS-
OCT horizontal scan to identify angle-closure subjects; 
CNN was also used in this task. Fu et al. used a sliding 
window to detect the ACA region, and then proposed 
a multi-level deep network combined with global and 
local layer feature representation to detect the angle 
status of AS-OCT images [5, 41].

However, static anatomical factors alone cannot fully 
explain the high prevalence of PACG, while dynamic 
changes of anterior chamber structure are more con-
vincing for the diagnosis [42]. For example, Fig. 5a is an 
angle-closure video sample with the angle status in dark 
(3rd frame) and bright condition (55th frame), while 
Fig. 5b shows a normal sample with the angle status in 
dark (4th frame) and bright condition (34th frame). For 
the two samples, it was noted that the ACA status was 
almost closed in dark environments, but after light illu-
mination, the angles become larger. For example, videos 
such as Fig. 5 account for about 20.6% of the angle-clo-
sure samples and 22.5% of the normal samples in our 
Casia dataset. Thus, it may lead to inconsistent results 
for the same sample if only based on a single image.

An increasing number of studies suggest that iris 
dynamic differences were associated with closed angles 
[8, 23, 27, 28, 43, 44]. There are also several angle-clo-
sure classification methods using datasets collected 
under both dark and bright illumination conditions 
[18–20]. Hao et al. [18, 19] proposed a multi-sequence 
deep network, which learned to identify discriminative 
representations from a sequence of AS-OCT images. 
Li et  al. [20] developed a three-dimensional deep 
learning-based automated digital gonioscopy system 
in detecting narrow iridocorneal angles and peripheral 

anterior synechiae in eyes with suspected PACG. How-
ever, the datasets they used do not contain the tem-
poral information of iris dynamic changes over time. 
Instead, for our dataset, the pupil and anterior chamber 
changes from dilatation in the dark to constriction in 
the light were recorded. Although some studies ana-
lyze iris dynamic differences for angle-closure subjects 
[8, 23, 27, 28, 43, 44], they are mainly based on tradi-
tional image processing and measurement of relevant 
anatomical parameters, and our proposed method is 
the first end-to-end deep learning classification on AS-
OCT videos. Based on the findings [8, 23] regarding iris 
change in response to illumination for angle-closure 
subjects, we further evaluated it from two different 
perspectives based on two datasets. We first calculated 
five dynamic parameters of pupil constriction during 
dark-light illumination change. The results showed that 
angle-closure eyes have a significantly slower speed and 
smaller acceleration of pupil constriction in response 
to light compared to normal eyes. Furthermore, the 
deep learning method learned the highly discriminative 
temporal representations from the AS-OCT videos. 
The experiments demonstrated that the deep learning 
method enables automated identification of angle clo-
sure with a high AUC score.

One limitation of this study is that a specific Asian 
population (Chinese) was evaluated, and the results may 
not apply to other ethnic groups. Second, we only ana-
lyzed the scans from the nasal side to the temporal side 
to avoid occlusion of eyelids. The data measured from a 
single direction cannot perfectly express the overall state 
of the anterior segment. Third, the current sample size 
for data analysis was small, which therefore limits what 
can be achieved using deep learning. We believe that the 
model should become stable and more powerful as the 
sample size increases. Fourth, the AS-OCT videos were 
taken from our devices, this could negatively affect the 
quality and performance when the network is applied 
to videos from other AS-OCT acquisition devices. In 
addition, we validated our temporal network by separat-
ing the devices. The effectiveness of our network is not 

3rd frame (dark) 34th frame (bright)4th frame (dark)55th frame (bright)
a Angle-closure b Normal

Fig. 5  The example of (a) angle-closure and (b) normal video
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evaluated on more devices or multi-center datasets. Fifth, 
the pupil dynamics of other glaucoma subjects, like open-
angle glaucoma, have not yet been assessed; the pattern 
of pupil dynamics may be different in other types of glau-
coma. Finally, since the main focus of this study was the 
real-time motion parameters in the iris and its relation-
ship with angle closure, other factors related to angle 
closure, such as iris surface features, iris volume, and iris 
curvature, were not studied.

Conclusions
In summary, after measuring velocity and acceleration 
of pupil contraction in response to dark-light changes 
using AS-OCT videos and evaluating their association 
with angle closure, we further developed a deep learning 
framework to learn discriminative temporal features from 
AS-OCT videos. Deep learning is a promising technology 
for helping clinicians in reliably identifying angle closure 
in AS-OCT videos with high AUC scores. The proposed 
framework opens the possibility for further enhancing 
the ability of angle-closure related disease screening from 
a new perspective. Additional studies are required to 
explore the utility of deep learning algorithms deployed 
in different population settings, with the use of multiple 
manufacturers’ devices and larger AS-OCT datasets. In 
our future work, we will focus on creating a larger, multi-
device and multi-center dataset. We will also assign more 
importance to developing multi-device compatibility/
fusion algorithms and continuously improve the network’s 
generalization, robustness, and accuracy.
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