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Abstract 

Background:  To examine the effectiveness of the use of machine learning for adapting an intraocular lens (IOL) 
power calculation for a patient group.

Methods:  In this retrospective study, the clinical records of 1,611 eyes of 1,169 Japanese patients who received a 
single model of monofocal IOL (SN60WF, Alcon) at Miyata Eye Hospital were reviewed and analyzed. Using biometric 
metrics and postoperative refractions of 1211 eyes of 769 patients, constants of the SRK/T and Haigis formulas were 
optimized. The SRK/T formula was adapted using a support vector regressor. Prediction errors in the use of adapted 
formulas as well as the SRK/T, Haigis, Hill-RBF and Barrett Universal II formulas were evaluated with data from 395 
eyes of 395 distinct patients. Mean prediction errors, median absolute errors, and percentages of eyes within ± 0.25 
D, ± 0.50 D, and ± 1.00 D, and over + 0.50 D of errors were compared among formulas.

Results:  The mean prediction errors in the use of the SRT/K and adapted formulas were smaller than the use of other 
formulas (P < 0.001). In the absolute errors, the Hill-RBF and adapted methods were better than others. The perfor-
mance of the Barrett Universal II was not better than the others for the patient group. There were the least eyes with 
hyperopic refractive errors (16.5%) in the use of the adapted formula.

Conclusions:  Adapting IOL power calculations using machine learning technology with data from a particular 
patient group was effective and promising.
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Background
Premium intraocular lenses (IOLs), such as toric and 
presbyopia-correcting IOLs, necessitate accurate power 
calculations to minimize postoperative refraction error. 
With the use of third- and fourth-generation calcula-
tions, such as the SRK/T and Haigis formulas, postopera-
tive refractive errors fall within ± 1.00 D in 93% of eyes 
[1], which is acceptable for the use of monofocal IOLs. 
Higher accuracy of over 90% within ± 0.50 D error is 
desired for most patients to obtain uncorrected distance 

visual acuity of 20/20 or better. Currently, sophisti-
cated power calculations, such as the Barrett Universal 
II (BUII) [2] and Hill-Radial Basis Function (Hill-RBF) 
[3], have been recommended, and their superiority were 
demonstrated in several publications [4–6]. New gen-
eration formulas enable higher accuracy by adding more 
biometric measurements, such as lens thickness and cor-
neal diameter, utilizing complicated modeling of ocular 
geometry, and utilizing machine learning with a large 
dataset.

There are prediction errors inherent to a patient’s eth-
nicity, race, and region, since norms in Caucasian eyes 
are assumed in most ocular modeling, and large training 
data are obtained from Caucasian eyes. Fundamentally, 
an ocular optical system is determined by the relative 
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position and properties of the cornea, anterior segment, 
crystalline lens, and ocular axial length, and thus char-
acteristics of ocular optics varies with geometric or ana-
tomical differences in different patient groups. Compared 
with Caucasian eyes, Chinese corneas show flatter ker-
atometry and more prolateness [7], and smaller corneal 
diameters and shallower anterior chambers are found in 
Chinese and Japanese eyes [8]. Such geometric differ-
ences influence the assumption used in conventional for-
mulas. Assessment by Melles et al. with 18,501 implanted 
eyes shows that the performances of power calculation 
formulas vary with axial length (AXL), anterior chamber 
depth (ACD), mean keratometry (K), and lens thickness 
(LT) [6]. The influences of ACD and LT on the perfor-
mance of recently developed formulas are revealed in 695 
Caucasian eyes [9]. In fact, there are particular character-
istics in the patient group of each site. For example, cata-
ract patients on Kyushu Island in Japan are characterized 
by smaller corneal diameters, shallower anterior cham-
bers, and narrower angles [10, 11]. Hence, it is important 
to adapt conventional and universal power calculations 
for patients.

Conventionally, the differences among different patient 
groups have been adjusted by optimizing the constants 
of formulas. Constant optimizations are possible in the 
third- and fourth-generation formulas. However, opti-
mizations of unpublished formulas, such as the BUII and 
Hill-RBF, are impractical [12]. In addition, these calcula-
tions are optimized for major IOL models. Therefore, it 
is a major concern that comparable accuracy might be 
achieved in the use of other IOL models, which are avail-
able and common for regional medical situations.

Alternatively, machine learning technology has been 
utilized to construct power calculators that are adapted 
for a patient group. In the field of IOL power calcula-
tions, several machine-learning based calculations have 
been developed, such as the Hill-RBF [3], Kane [13], 
Sramka [14], and Pearl-DGS [15]. Support vector regres-
sion (SVR) is a machine learning technique that provides 
a nonlinear regression function that have at most a cer-
tain margin from actually obtained targets (correspond-
ing to prediction errors) for all training data and was as 
flat as possible (corresponding to minimum amounts of 
regression coefficients) [16]. Carmona González et  al. 
combined SVR and multivariate adaptive regression 
spline with training set data using 208 eyes [17], provid-
ing the most accurate performance compared with the 
4 conventional formulas. Ladas et  al. revealed that SVR 
supervised nonlinear regression machine learning was 
suitable for optimization of existing IOL power calcula-
tion formulas, compared with extreme gradient boosting 
(XGBoost) and artificial neural network (ANN) [18]. In 
the evaluation of various machine learning algorithms 

with a training dataset of 2,831 eyes of 1,659 patients 
with 13 kinds of IOLs by Yamauchi et al., superior perfor-
mances were obtained with SVR over conventional for-
mulas [19]. While the sample size was insufficient and/
or multiple IOL models were used for training and evalu-
ation, the previous approaches demonstrated the poten-
tial of machine learning for obtaining a power calculation 
suitable for a particular patient group. This retrospec-
tive study aimed to examine the effectiveness of machine 
learning-based power calculations for a patient group 
using a single IOL model.

Methods
Participants
This study was approved by the institutional review 
board of Miyata Eye Hospital (CS-334) and adhered to 
the tenets of the Declaration of Helsinki. The use of clini-
cal records related to cataract surgery were approved 
via informed consent before surgery. Clinical records 
of 1792 eyes of 1269 consecutive Japanese patients who 
underwent cataract surgery at Miyata Eye Hospital with 
implantation of the IOL SN60WF (Alcon, Fort Worth, 
TX) from November 2017 until July 2019 were reviewed. 
The inclusion criteria were eyes in which AXL, K with 
diameters of 2.5 mm, ACD, LT, central corneal thickness 
(CCT), and white-to-white width (WTW) were meas-
ured preoperatively using an OA-2000 swept-source 
biometer (Tomey, Nagoya, Japan). Eyes in which the 
postoperative corrected distance visual acuity was worse 
than 16/20 were excluded from analysis.

Subjects were divided into two groups (Fig. 1). A train-
ing set was used for adapting power calculations for 
the patient group. A validation set was used to evalu-
ate the effect of the adaptations. Manifest refraction 
spherical equivalent (MRSE) at 3 months postoperatively 
were obtained during the best-corrected visual acuity 
examination at 5  m by experienced examiners. Predic-
tion errors of predicted postoperative refractions from 
MRSEs were calculated. The SRK/T, Haigis, BUII, Hill-
RBF (version 3), and machine learning-based methods 
were evaluated.

IOL power calculations
For the SRK/T and Haigis formulas, the constants were 
optimized using the training set. Optimization of the 
BUII calculation was not conducted since it has not been 
commonly available [12]. As the Hill-RBF version 3 which 
was optimized for SN60WF and MA60MA (Alcon) IOLs 
by utilizing pattern recognition by artificial intelligence 
together with a large global database [3], no optimization 
was applied.

The adapted calculator was designed using SVR 
[16]. Figure  2 shows the schematic architecture of an 
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adapted calculator; AXL, K, ACD, LT, WTW and the 
predicted refraction obtained from the SRK/T formula 
were inputs. This calculator was designed for refining 
the outputs from the SRK/T with SVR machine learn-
ing with the training set. The calculator was created by 
utilizing the “scikit-learn” library (https://​scikit-​learn.​
org/​stable/​modul​es/​svm.​html#​svm-​regre​ssion) in the 
programming language Python 3. In training of SVR 
with RBF kernel, hyperparameters such as a C con-
stant and shape parameter γ of the kernel function were 
tuned using a grid search for avoiding overfitting.

With the validation set, 5 kinds of calculations, i.e., the 
SRK/T, Haigis, BUII, Hill-RBF, and adapted methods were 
evaluated. To assess the accuracy achieved in practice 
situations, further optimization was not conducted. The 
means and standard deviations (SDs) of prediction errors 
were calculated. For absolute prediction errors, the median 
absolute error (MedAE) was obtained. The proportion of 
eyes within ± 0.25 D, ± 0.50 D, and ± 1.00 D prediction 
errors were calculated. In addition, the eyes of + 0.50 D or 
larger errors were also calculated as hyperopic errors are 
more severe with respect to a patient’s quality of life.

Fig. 1  Training and validation sets assigned from eligible subjects for adapting and evaluating the performance of power calculation formulas for a 
patient group

Fig. 2  Architectural schematics of IOL power calculation using a support vector regressor (SVR). Inputs of SVR were predicted refraction results 
obtained with the SRK/T formula, axial length (AXL), mean keratometry (K), anterior chamber depth (ACD), lens thickness (LT), and white-to-white 
width (WTW)

https://scikit-learn.org/stable/modules/svm.html#svm-regression
https://scikit-learn.org/stable/modules/svm.html#svm-regression
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Statistical analysis
Mean prediction errors were compared between the 5 
calculations using repeated ANOVA followed by the 
Holm multiple comparisons, while the absolute pre-
diction errors were examined using the Freedman test 
followed by Scheffé pairwise comparison. The percent-
ages of eyes within ± 0.25 D, ± 0.50 D, and ± 1.00 D, and 
over + 0.50 D were examined using the Chi-squared test 
following the residual test. Associations of AXL, ACD, K, 
and WTW to prediction errors in the use of the adapted 
calculator were examined using linear regression analy-
sis. P < 0.05 indicates a statistically significant difference.

Results
The sample consisted of 1611 eyes from 1169 eligible 
patients. Among them, the validation set consisted of 400 
eyes of 400 individual patients chosen at random, and 
the rest were used for the training set (1211 eyes of 769 
patients). Demographic data for both sets are shown in 
Table 1. Although the K values were significantly differ-
ent, the mean difference (0.22 D) was only 0.5% of the 
mean value and would be within the level of examina-
tion tolerance. There were no differences in other biom-
etric parameters. For the powers of implanted IOLs and 
MRSE, no difference was found.

With the training sets, the constants were optimized to 
be A = 119.18 for the SRK/T formula and a0 =  − 2.1245, 
a1 = 0.2032, and a2 = 0.2866 for the Haigis formula.

In the validation set, the Hill-RBF was not available for 
4 eyes due to being out of range. Figure 3 shows the dis-
tribution of the prediction errors from 396 eyes. There 
was one subject resulting in a myopic outlier (denoted as 
a “blue x” in Fig. 3), which corresponded to an eye with 
a short AXL (22 mm), a shallow ACD (2.43 mm) and an 
abnormality in corneal topography. Hence, this subject 
was also excluded from further analysis.

Table 2 lists the means and SDs of the prediction errors, 
the MedAEs, and the percentages within ± 0.25 D, ± 0.50 
D, and ± 1.00 D, and over + 0.50 D. For the mean predic-
tion errors, the SRK/T and adapted formulas resulted in 
lower mean values (P < 0.001, Holm multiple comparison) 

Table 1  Demographic data for the training and validation sets

IOL intraocular lens; MRSE manifest refraction spherical equivalent; D diopter
*  Unpaired t-test

Parameter Training set
mean ± SD (range)

Validation set
mean ± SD (range)

P value*

N, eye/patient 1211/769 400/400

Age (years) 72.8 ± 8.7
(24–92)

73.1 ± 9.8
(31–93)

0.65

Axial length (mm) 23.92 ± 1.54
(20.8–29.8)

23.92 ± 1.53
(21.1–32.0)

0.78

Anterior chamber depth (mm) 3.15 ± 0.40
(2.12–4.54)

3.15 ± 0.40
(2.15–4.06)

0.97

Mean keratometry (D) 44.35 ± 1.54
(37.3–49.7)

44.13 ± 1.63
(36.8–48.5)

0.02

Lens thickness (mm) 4.63 ± 0.44
(3.0–5.8)

4.63 ± 0.45
(3.3–5.9)

0.75

Central corneal thickness (μm) 518.4 ± 32.2
(365–634)

518.8 ± 33.6
(392–606)

0.84

White-to-white width (mm) 11.7 ± 0.4
(10.2–13.0)

11.7 ± 0.4
(10.2–12.9)

0.35

IOL power (D) 20.0 ± 3.9
(6.0–30.0)

20.2 ± 3.8
(6.0–28.0)

0.49

Postoperative MRSE (D)  − 0.39 ± 0.81
(− 4.88–1.25)

 − 0.37 ± 0.86
(− 5.25–1.63)

0.72

Fig. 3  Box plots of prediction errors in the use of the 5 kinds of 
power calculations
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compared with others. Distribution of prediction errors 
in the use of the SRK/T and adapted formulas are shown 
in Fig.  4, which indicate that the adapted calculation 
reduced prediction errors in both the myopic and hyper-
opic directions. For the absolute prediction errors, the 
use of BUII resulted in higher errors than the other cal-
culations (P < 0.010, Scheffé multiple comparison), and 
the adapted method showed lower errors than the use 
of the SRK/T, Haigis and BUII formulas (P < 0.011). No 
statistically significant difference was found between the 
Hill-RBF and adapted methods (P = 0.76).

The percentages of eyes within errors of ± 0.25 
D, ± 0.50 D, and ± 1.00 D are shown in Table 2 and Fig. 5. 
No difference was found within ± 1.00 D errors. More 
eyes achieved errors within ± 0.50 D in the use of the 
adapted method (P = 0.0012, residual analysis), while 
the number of eyes within this error bound was signifi-
cantly lower in the use of the BUII method (P < 0.001). 
The adapted method achieved more eyes with errors 
within ± 0.25 D than did others (P < 0.001). Hyperopic 
errors over + 0.50 D were significantly less with the use 
of the adapted method (P = 0.0012), but there were more 
eyes in the use of BUII (P < 0.001).

Figure 6 shows the relationship of AXL, ACD, K, and 
WTW to prediction error in the use of the adapter 
method. There was no significant correlation with AXL, 
ACD and K values. The prediction errors were correlated 
with WTW (P < 0.001, R2 = 0.044, linear regression analy-
sis), and the resultant regression equation indicated no 
prediction error at WTW of 11.8 mm.

Discussion
For this patient group, IOL power calculations adapted 
with the patient group data achieved better accuracy 
than the other formulas. For Japanese patients on South-
ern Kyushu Island, the performance of BUII was no bet-
ter than that of the constantly optimized SRK/T and 
Haigis, supporting the importance of adaptation for the 

patient group. The accuracy improved with the use of 
SVR for refining the SRK/T with the training set, as pre-
sented in previous studies [17–20]. For Chinese myopic 
eyes, the machine learning-based calculation showed 
superior results to the BUII [20]. The findings indicated 
that adapting a power calculation formula for a patient 
group would be effective.

Machine learning and artificial intelligence have 
been applied for IOL power calculations. The theo-
retical optics-based Kane formula incorporates both a 
regression component and artificial intelligence using 
approximately 30,000 cases [5]. The parameters of the 
AL, keratometry, ACD, and sex are required. The Hill-
RBF uses adaptive learning from large biometric data of 
eyes with SN60WF and MA60MA IOLs (Alcon), meas-
ured with an LS 900 optical biometer (Haag-Streit) [3]. 
Table  3 shows the performance of machine learning-
based formulas. The performance in the use of the Hill-
RBF version 2 and Kane formulas for Chinese eyes was 
lower than that for Caucasian eyes [17, 21]. Geometric 
differences in biometric parameters from the training 
dataset is one of the contributing factors. In the use of 
formulas developed with data from the patient group, 
such as XGBoost [6] and current SVR machine learn-
ing, the mean prediction errors, MedAEs, and percent-
ages of eyes within ± 0.25, ± 0.50, and ± 1.00 D were 
comparable with the accuracy obtained with Caucasian 
eyes. The comparison of the current and previous per-
formances indicated the influence of the patient group 
and the effectiveness of a patient group-based adapta-
tion. In addition, it was anticipated that machine learn-
ing adaptation would be effective for the use of IOL 
differences from those used for training.

In the mean prediction errors with the adapted calcu-
lations, there was no association with the AXL, ACD, 
and K. While the AXL range was limited in the current 
study, the influence of AXL was minimal. In an evalu-
ation of 828 patients in Spain, the mean prediction 

Table 2  Means, SDs, MedAEs of prediction errors, and proportions of errors within ± 0.25 D, ± 0.50 D, ± 1.00 D, and greater than + 0.50 
D in the use of 5 kinds of power calculations (N = 395 eyes)

BUII Barrett Universal II; SD standard deviation; D diopter; MedAE median absolute error

Adapted denotes SRK/T formula adapted with support vector regressor
*  and x: significantly larger or smaller than the mean levels, respectively (residual analysis)

Power calculation method SRK/T Haigis BUII Hill-RBF Adapted

Mean (SD), D 0.02 (0.45)  − 0.03 (0.44) 0.25 (0.40) 0.12 (0.40) 0.01 (0.38)

MedAE, D 0.27 0.27 0.31 0.27 0.21

Within ± 0.25 D 46.1% 47.1% 41.0%x 46.6% 54.4%*

Within ± 0.50 D 75.2% 78.2% 70.9%x 79.5% 83.5%*

Within ± 1.00 D 96.2% 96.7% 96.2% 97.5% 98.5%

Greater than + 0.50 D 24.8% 21.8% 29.1% 20.5% 16.5%*
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errors with the use of the Hill-RBF Version 2 and Kane 
formulas did not change relative to the AXL [22]. As 
the patient group was different from the  one which 
produced previous results, the influence of AXL on the 
accuracy was not found in the adapted calculation. In 
contrast, there was a significant correlation with WTW, 
and the regression equation equaled to be zero at 
11.8 mm. Compared with demographic of the patients, 
this result demonstrates that the adapted calculation 
successfully minimized WTW influence.

The adapted IOL power calculation was designed for 
refining the predicted refractions delivered from the 
conventional SRK/T formula, while most of the previ-
ous approaches did not utilize the conventional for-
mulas [3, 5, 17, 19, 20]. As the training was focused 
on refining the prediction of the SRK/T formula, the 
accuracy was obtained with a limited size of the train-
ing dataset, as demonstrated previously [20]. The 
improvement in the use of SVR was higher than the 
use of constant optimization (Table 2), while increasing 

Fig. 4  Distribution of prediction errors in the use of the SRK/T and adapted calculation

Fig. 5  Percentages of eyes with errors within ± 0.25 D, ± 0.50 D, and ± 1.00 D as well as greater than + 0.50 D for the use of 5 kinds of power 
calculations (N = 395 eyes). Blue and red arrows denote significantly superior and inferior proportions of eyes compared with other calculations
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the inputs of biometric parameters (AXL, K, ACD, LT, 
and WTW) also contributed. It was anticipated that the 
current approach would be beneficial for adaptation for 
the patient group. Further evaluations are necessary for 
verifying it.

The effectiveness for other types of IOL was a concern. 
Previous assessments of machine-learning based calcu-
lations demonstrated the use for other IOL models with 
open-loop design [5, 17, 19]. In contrast, for IOLs with 
plate or loop haptics, postoperative position varies with 

the geometric difference in crystalline lens [23]. Small or 
shrinking equatorial diameter can displace the IOL pos-
teriorly and induce hyperopic refractive errors. Unfor-
tunately, such influences could not be adapted in the 
current approach since accurate lens geometry and quan-
titative evaluation of the influence are not available at this 
moment.

There were limitations in the retrospective evalua-
tions. First, although most of biometric parameters were 
measured with a swept-source biometer, other geometric 

Fig. 6  Relationship of axial length (a), anterior chamber depth (b), mean keratometry (c), and white-to-white (d) values to prediction errors in the 
use of the adapted calculation. There was no significant association except for white-to-white (P < 0.001, R2 = 0.044, linear regression analysis)

Table 3  Performance of machine learning-based formulas

SVR support vector regression; MAR multivariate adaptive regression spline; XGBoost extreme gradient boosting machine learning; SD standard deviation; D diopter; 
MedAE median absolute error; N.A. not available

* version 2

Study Carmona González D et al.
(N = 260) [17]

Zhao J et al.
(N = 53) [21]

Wei L et al.
(N = 1450) [20]

Current

Calculation method Hill-RBF* SVR + MAR Hill-RBF* Kane XGBoost SRK/T + SVR

IOL 10 models 10 models SBL-3 SBL-3 8 models SN60WF

Country Spain Spain China China China Japan

Mean prediction error (SD), D  − 0.17 (0.40) 0.04 (0.30)  − 0.51 (0.61)  − 0.50 (0.60) N.A. 0.01 (0.38)

MedAE, D 0.28 0.18 0.55 0.45 0.29 0.21

Within ± 0.25 D 48.1% 65.4% 24.5% 28.3% 43.9% 54.4%

Within ± 0.50 D 80.8% 90.4% 47.2% 52.8% 72.8% 83.5%

Within ± 1.00 D 100.0% 100.0% 81.1% 83.0% 99.1% 98.5%
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characteristics of the patient group, such as angle and 
diameter of crystalline lens, as well as the postoperative 
ACD and anterior capsulotomy, could not be examined in 
the retrospective design. Hence, the causes of larger errors 
in the use of BUII could not be evaluated. Next, most of 
the subjects were in the range of normal Japanese eyes: 
AXLs of 87.1% of eyes were between 22 and 26 mm in the 
validation set. In vergence-based formulas, the prediction 
errors increase in short and long eyes [6]. Further evalu-
ations are required for short and long eyes. Moreover, it 
was not clear whether the SVR-based calculations would 
be effective for other IOL models. Conventional formu-
las allow the use of any IOL model by adjusting the lens-
related constants. Similarly, the SVR-based method would 
accommodate other IOL models with the A-constant 
in the SRK/T calculation; however, it has not yet been 
examined. In addition, the accuracy for cases in which the 
biometry data are not within the range of the training set, 
are not predictable. In machine learning-based calcula-
tions, out of range data lower accuracy but increasing the 
size of the training set could circumvent this issue [3]. As 
the current approach used nonlinear regression [16] as 
well as data set restricted in the particular patient group, 
it is anticipated that such a risk and influence would be 
reduced. Lastly, it was of interest whether such a machine 
learning-based adaptation could be possible and prac-
tical. Currently, some popular machine learning tech-
niques are available in free software environments, such 
as Python and R. In R, SVR was available in the package 
‘e1071’ (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​e1071/​
index.​html). Although it takes time to learn the software, 
adaptation for the patient group can very well be possible. 
However, there was no idea as to how much data from the 
patient group would be minimally required, owing to the 
nonlinear property for trainings.

Conclusion
The current study demonstrated the effectiveness of the 
adaptation of IOL power calculation formulas utilizing 
the SVR and the patient group data. The adapted calcu-
lation would outperform the constant optimization and 
the use of latest formulas when there are geometric dif-
ferences in the patients’ eyes.
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