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based on corneal biomechanical properties
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Abstract

Background:To investigate machine-learning (ML) algorithms to differentiate corneal biomechanical properties
between different topographical stages of keratoconus (KC) by dynamic Scheimpflug tonometry (CST, Corvis ST,
Oculus, Wetzlar, Germany). In the following, ML models were used to predict the severity in a training and
validation dataset.
Methods: Three hundred and eighteen keratoconic and one hundred sixteen healthy eyes were included in this
monocentric and cross-sectional pilot study. Dynamic corneal response (DCR) and corneal thickness related
(pachymetric) parameters from CST were chosen by appropriated selection techniques to develop a ML algorithm.
The stage of KC was determined by the topographical keratoconus classification system (TKC, Pentacam, Oculus).
Patients who were classified as TKC 1, TKC 2 and TKC 3 were assigned to subgroup mild, moderate, and advanced
KC. If patients were classified as TKC 1–2, TKC 2–3 or TKC 3–4, they were assigned to subgroups according to the
normative range of further corneal indices (index of surface variance, keratoconus index and minimum radius).
Patients classified as TKC 4 were not included in this study due to the limited amount of cases. Linear discriminant
analysis (LDA) and random forest (RF) algorithms were used to develop the classification models. Data were divided
into training (70% of cases) and validation (30% of cases) datasets.
Results:LDA model predicted healthy, mild, moderate, and advanced KC eyes with a sensitivity (Sn)/specificity (Sp)
of 82%/97%, 73%/81%, 62%/83% and 68%/95% from a validation dataset, respectively. For the RF model, a Sn/Sp of
91%/94%, 80%/90%, 63%/87%, 72%/95% could be reached for predicting healthy, mild, moderate, and advanced KC
eyes, respectively. The overall accuracy of LDA and RF was 71% and 78%, respectively. The accuracy for KC
detection including all subgroups of KC severity was 93% in both models.
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Conclusion:The RF model showed good accuracy in predicting healthy eyes and various stages of KC. The
accuracy was superior with respect to the LDA model. The clinical importance of the models is that the standalone
dynamic Scheimpflug tonometry is able to predict the severity of KC without having the keratometric data.
Trial registration: NCT04251143 at Clinicaltrials.gov, registered at 12 March 2018 (Retrospectively registered).
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Background
Keratoconus (KC) is a bilateral ectatic disease of the cor-
nea that is characterized by corneal steepening and thin-
ning [1]. As a result, irregular astigmatism may lead to
loss of vision. Former studies have reported low inci-
dence and prevalence of keratoconus [2]. Recently, it
was shown that KC does not occur as rarely as described
[3]. Due to improving diagnosis, it is assumed that
prevalence is higher and depends on geographic regions
[4]. Placido-disk, Scheimpflug or optical coherence tom-
ography (OCT) technology are useful tools to image cor-
neal topography and tomography for screening ectasia.
In the case of KC, biomechanical properties are altered
to the effect that corneal tissue is biomechanically weak-
ened [5]. Especially, focal weakening of elastic properties
might be the initial trigger for stromal thinning and in-
creasing steepening [6]. Thus, in vivo biomechanical as-
sessment of the cornea became popular by releasing the
non-contact tonometer labeled as ocular response
analyzer (ORA, Reichert, Ophthalmic Instruments, De-
pew, NY, USA) in the field of refractive surgery, kerato-
conus and glaucoma [7]. ORA provides information
regarding corneal viscoelastic properties that are de-
scribed as corneal hysteresis and corneal resistance fac-
tor [7, 8]. Furthermore, keratoconus match index (KMI,
ORA) and probability (KMP, ORA) are derived from in-
dividual waveform characteristics of the measurement
signal and are compared to a normative database [9, 10].
Furthermore, investigations have shown that this data-
base was not related to an objective keratoconus classifi-
cation; besides, cases were classified by individuals of
four different settings [11]. Therefore, no clear correl-
ation to the topographic keratoconus classification
(TKC, Pentacam, Oculus, Wetzlar, Germany) or anterior
surface indices such as keratoconus index (KI, Penta-
cam), could be found throughout several investigations.
Later, a Scheimpflug-based tonometer was introduced
by Oculus that records the corneal deformation process
induced by an air-puff using an ultra-high-speed camera
(Corvis ST, Oculus, Wetzlar, Germany). The measure-
ment outcome of the Corvis ST is described as dynamic
corneal response (DCR) parameters. It has been shown
that DCR parameters are highly repeatable in healthy
[12] and KC eyes [13]. Additionally, Corvis ST can be
used to assess alterations before and after corneal cross-

linking (CXL) [14–16]. Corvis biomechanical index
(CBI) and tomographic and biomechanical index (TBI)
are indices that are able to differentiate between healthy
and KC eyes as well as healthy and subclinical ectasia
[17, 18]. Subclinical eyes were defined as those with nor-
mal topography in one eye and manifest KC in the fel-
low eye with very asymmetric ectasia [17]. However,
these indices were not designed to differentiate between
various stages of KC. Previously, we showed that DCR
parameters were different in several stages of KC [19].
The aim of this pilot study was to develop a corneal bio-
mechanical based classification model, called Dresden
keratoconus index (DKI), to predict the severity of KC in
a standalone Corvis ST measurement without having
keratometry data from the cornea.

Materials and methods
Subjects
This monocentric pilot study was conducted at the De-
partment of Ophthalmology, University Hospital Carl
Gustav Carus, TU Dresden, Germany. The study proto-
col was approved by the ethics committee of the Univer-
sity Hospital Carl Gustav Carus, Dresden, TU Dresden,
Germany following the tenets of the Declaration of
Helsinki. Participants and KC patients were enrolled be-
tween January 2017 and March 2020 from the refractive
and keratoconus clinic at the Department of Ophthal-
mology, University Hospital Carl Gustav Carus. All sub-
jects had to confirm their approval by signing the
informed consent. Furthermore, healthy subjects and
keratoconus patients have received a complete ophthal-
mologic examination including slit lamp biomicroscopy
of the anterior segment and fundus biomicroscopy as
well as a survey of their medical history. Inclusion cri-
teria for healthy participants were an age between 18
and 45 years, normal tomography, an intraocular pres-
sure less than 21 mmHg and an ordinary optic nerve
head. KC patients had to present clear signs of keratoco-
nus in corneal maps (derived from Scheimpflug tomog-
raphy) that was approved by an experienced clinician
(FR) and optometrist (RH). The topographical keratoco-
nus classification (TKC) had to be at least stage 1 (TKC
1). Of note, one follow-up examination was necessary to
confirm topographical stability. Healthy participants and
KC patients were requested to discontinue the wearing
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of contact lenses for 10 days. Exclusion criteria were
previous corneal and ocular surgeries (e.g., corneal
cross-linking), diabetes mellitus and severe cases of KC.

Measurement of dynamic corneal response parameters
The Corvis ST measures the corneal response to an in-
duced, predefined air-puff using an ultra-high speed
Scheimpflug camera [20, 21]. DCR and corneal thickness
related (pachymetric) parameters are derived from 2-
dimensional cross-section records of the cornea and de-
scribing the corneal behavior during different deform-
ation phases. First, the air-puff reaches the cornea and
pushes it to the 1st applanation. While the air-puff is ac-
tive, the cornea is forced into a concave shape (described
as highest concavity, HC). After that, the air pressure de-
creases and the cornea moves back through the 2nd
applanation to its physiological state. Some of the DCR
parameters indicate time and velocity to 1st and 2nd
applanation as well as maximum deformation [18, 20–
22]. Furthermore, corneal pachymetry (Pachy) and cor-
neal thickness related parameters (ARTh, Ambrosio Ra-
tional Thickness horizontal [18] and Pachyslope [23])
are measured before the air-puff reaches the cornea.
ARTh is calculated as the thinnest corneal thickness di-
vided by pachymetric progression to periphery [18].
Contrarily, Pachyslope is calculated as the difference of
mean corneal thickness at ±2.5 mm and corneal thick-
ness at the apex [23, 24]. The latest software release has
included novel parameters like biomechanical corrected
intraocular pressure (bIOP) [25, 26]; maximum inverse
concave radius (InverseR) [18]; integrated inverse radius
(IntInverseR) [18]; ratio of central and peripheral de-
formation in a distance of 1 mm and 2mm (DAR1/
DAR2) [18] and stiffness parameter at the 1st applana-
tion (SPA1) [22]. Furthermore, the CBI is a combined
index of several DCR parameters based on logistic re-
gression analysis that distinguishes between healthy and
KC eyes [18]. Instead, the TBI combines DCR and tomo-
graphic parameters using a random forest method [17].

Corneal tomography measurements and classification of
keratoconus
Corneal tomography of healthy participants and KC pa-
tients were evaluated by Scheimpflug technology (Penta-
cam, Oculus, Wetzlar, Germany). Topographical data
were derived from these measurements. The following
parameters were used in this study: maximal keratome-
try (Kmax), thinnest corneal thickness (TCT), Belin/
Ambrósio total deviation value (BAD-D) and inferior-
superior keratometric difference (I-S value). Pentacam
provides two KC classification systems: the topographic
keratoconus classification (TKC) [27] and the ABCD
grading [28]. Both of them are related to the Amsler-
Krumeich KC classification [27, 28]. The ABCD grading

offers an independent staging of anterior as well as pos-
terior surface and TCT. However, our clinical experience
has shown that it is difficult to find patients, which have
the same stage in each category (e.g., A2B2C2). There-
fore, we decided to use TKC as target classification for
predicting KC severity by DCR and pachymetric parame-
ters. TKC is based on topographic indices like index of
surface variance (ISV), keratoconus index (KI) and mini-
mum radius (Rmin) [27]. KC patients who were classi-
fied as TKC 1, TKC 2 and TKC 3, were assigned to
subgroups “mild KC”, “moderate KC” and “advanced
KC”, respectively. Patients classified as “TKC 1–2” and
“TKC 2–3” were assigned to mild and moderate, accord-
ing to the normative range of ISV, KI and Rmin (shown
in Table 1). Patients classified as “TKC 4” were not in-
cluded in this study due to the limited number of cases.

Statistical analysis and classification models
Statistical analysis and machine learning algorithms were
performed using SPSS (version 25, IBM Statistics,
Armonk, New York, USA) and R (R Foundation for Stat-
istical Computing, Vienna, Austria; https://www.R-
project.org/). Incomplete data, insufficient quality of
Corvis ST measurement or outliers of patients’ datasets
were removed. One eye per participant or patient was
used. The dataset was randomly divided into a training
(around 70% of cases) and a validation (around 30% of
cases) dataset. To solve this classification problem, ran-
dom forest (RF) and linear discriminant analysis (LDA)
were selected due to their suitability for multiclass classi-
fication. Both RF [17, 29] and LDA [30–32] were used in
the past to solve classification problems in ophthalmol-
ogy. The RF model is a machine learning algorithm that
includes and combines a large number of decision trees
to solve classification and regression issues [33, 34]. A
decision tree is built up based on nodes where one inde-
pendent variable is chosen to cause a decision to find
the final prediction [33]. In RF, the outcome of each de-
cision tree is a vote and the most predicted decision de-
termines the final prediction [33]. On the other hand,
LDA is a classification algorithm that uses discriminant
functions, a linear combination of selected parameters,
to classify two or more groups [35]. The discriminant
function describes the numeric properties of the sub-
groups where the mean of these results constitute a cen-
troid [35]. The differences of these means of two or
more groups represent the cut-off value [35].
In general, machine learning approaches are catego-

rized as supervised, unsupervised and reinforcement
learning [33, 34]. Both RF and LDA are supervised ma-
chine learning algorithms. The aim of this application is
that the machine learning algorithms are able to learn
from a labeled dataset and to construct rules to predict
unlabeled data, which is not in the dataset [34]. The
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learning process also includes an improvement in the ac-
curacy if new data are added. The accuracy of the result-
ing model from the machine learning process depends
on the amount and the quality of the data. There is also
a risk of a biased training dataset that leads to a false
prediction of unlabeled and independent data.
DCR and pachymetric parameters were exported from

the Corvis ST software (version 1.5r1902) including 40
variables. The CBI and TBI were excluded because they
represent already established indices and were later used
for comparative analysis. Whole eye movement were not
considered in the analysis because it does not directly
represent corneal biomechanical properties. Parameters
were assessed in their multicollinearity to each other by
calculating the variance inflation factor (VIF) from the
regression analysis. In the following, the final selection
of DCR and pachymetric parameters were done by re-
cursive feature elimination (caret package, R) and step-
wise Wilks-Lambda method (SPSS) for RF and LDA,
respectively (Fig. 1). The performance of each algorithm
was evaluated with the validation dataset by generating a
confusion matrix. Additionally, accuracy of the algo-
rithm determined the overall performance, whereas sen-
sitivity (Sn) and specificity (Sp) were determined for each

subgroup (“healthy”, “mild KC”, “moderate KC” and “ad-
vanced KC”). Sn was calculated from

true positive= true positive þ false negativeð Þ ð1Þ

Sp was calculated from

true negative= true negative þ false positiveð Þ ð2Þ

In cases where Sn and Sp were calculated for each sub-
group (e.g., “mild KC”), true positives were all cases that
were classified as mild KC. True negatives were all non-
mild KC cases that were not classified as mild KC. False
positives were all non-mild KC cases that were classified
as mild KC, whereas false negatives were all mild KC
cases that were not classified as mild KC.
The developed algorithms were compared with respect

to their suitability of detecting KC in general using the
CBI and TBI. Finally, receiver operating characteristics
(ROC) curves were plotted and area under the curves
(AUC) were determined. For multiple comparisons, one-
way ANOVA with Bonferroni correction was used. A P
value of less than 0.05 showed statistical significance.
Sample size calculation was done using G Power (version

Table 1 Demographics of healthy and keratoconus subjects
Healthy Keratoconus P value Mild KC Moderate KC Advanced KC P value* P value† P value‡

N 116 318 N.A. 106 108 104 N.A.

Eye (right/left) 64/52 171/147 0.796 58/48 59/49 54/50 0.960

Gender (male/female) 74/42 246/72 0.004 76/30 83/25 87/17 0.007

Age (years) 29.3 ± 7.1 33.1 ± 8.1 < 0.001 33.4 ± 8.1 32.7 ± 7.0 33.2 ± 9.1 0.001 1.0 1.0

Km (D) 43.1 ± 1.3 46.9 ± 3.7 < 0.001 44.1 ± 1.7 46.7 ± 2.8 50.1 ± 3.1 0.023 < 0.001 < 0.001

ISV 21.1 ± 9.0 77.9 ± 34.8 < 0.001 40.3 ± 7.3 73.2 ± 9.5 121.0 ± 14.9 < 0.001 < 0.001 < 0.001

Normative range 27 N.A. N.A. N.A. 30–55 55–90 90–150 N.A. N.A. N.A.

KI 1.01 ± 0.02 1.21 ± 0.11 < 0.001 1.09 ± 0.03 1.19 ± 0.04 1.35 ± 0.07 < 0.001 < 0.001 < 0.001

Normative range 27 N.A. N.A. N.A. 1.07–1.15 1.10–1.25 1.15–1.45 N.A. N.A. N.A.

Rmin (mm) 7.58 ± 0.26 6.33 ± 0.68 < 0.001 7.05 ± 0.28 6.29 ± 0.36 5.63 ± 0.40 < 0.001 < 0.001 < 0.001

Normative range 27 N.A. N.A. N.A. 7.5–6.5 6.9–5.3 6.6–4.8 N.A. N.A. N.A.

Kmax (D) 44.6 ± 1.5 53.9 ± 5.9 < 0.001 48.0 ± 1.9 53.9 ± 3.1 60.2 ± 4.2 < 0.001 < 0.001 < 0.001

I-S value (D) � 0.26 ± 0.7 5.7 ± 3.2 < 0.001 2.6 ± 1.2 5.4 ± 1.4 9.4 ± 2.2 < 0.001 < 0.001 < 0.001

ARC (mm) 7.8 ± 0.2 6.9 ± 0.59 < 0.001 7.4 ± 0.3 6.9 ± 0.3 6.2 ± 0.4 < 0.001 < 0.001 < 0.001

PRC (mm) 6.4 ± 0.2 5.2 ± 0.6 < 0.001 5.8 ± 0.3 5.2 ± 0.3 4.6 ± 0.4 < 0.001 < 0.001 < 0.001

TCT (μm) 560 ± 24 475 ± 44 < 0.001 505 ± 31 478 ± 34 441 ± 39 < 0.001 < 0.001 < 0.001

BAD-D 0.6 ± 0.5 7.4 ± 3.8 < 0.001 3.9 ± 1.0 6.8 ± 1.6 11.6 ± 3.1 < 0.001 < 0.001 < 0.001

bIOP (mmHg) 15.2 ± 2.2 14.3 ± 2.1 < 0.001 14.5 ± 1.7 14.4 ± 2.1 14.1 ± 2.4 0.099 1.0 1.0

CBI 0.04 ± 0.10 0.86 ± 0.30 < 0.001 0.66 ± 0.40 0.93 ± 0.20 0.99 ± 0.00 < 0.001 < 0.001 0.224

TBI 0.08 ± 0.13 0.99 ± 0.04 < 0.001 0.99 ± 0.07 0.99 ± 0.00 0.99 ± 0.00 < 0.001 1.0 1.0
* Between Healthy and mild KC; † Between mild KC and moderate KC; ‡ Between moderate KC and advanced KC. ARC anterior radius of curvature; BAD-D Belin/
Ambrósio total deviation value; CBI Corvis biomechanical index; bIOP biomechanical intraocular pressure by Corvis ST; I-S inferior-superior; ISV index of surface
variance; KI keratoconus index; Km mean keratometry values; Kmax maximal keratometry value; N number of subjects; N.A. not applicable; PRC posterior radius of
curvature; Rmin minimum radius; TBI tomographic and biomechanical index; TCT thinnest corneal thickness. Normative range of ISV, KI and Rmin based on
Pentacam Software also published in [27]. Bold type signifies P < 0.05
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3.1.9.2, University of Duesseldorf, Germany) based on sig-
nificant differences between the four subgroups (healthy,
mild KC, moderate and advanced KC) using one-way
ANOVA. A sample size of at least 45 subjects were neces-
sary for each subgroup (effect size = 0.25, alpha error =
0.05, power = 0.8, number of groups = 4).

Results
Demographics
In this study, 116 eyes of 116 healthy participants (con-
trols) and 318 eyes of 318 keratoconus patients were an-
alyzed. There were significantly more male than female
subjects (P = 0.004). The demographic data of healthy
and keratoconus subjects are summarized in Table 1.
Topographic parameters (Km, Kmax, I-S value) were sig-
nificantly higher in the KC group than in controls (P <
0.001), as well as between healthy and mild KC, between
mild KC and moderate KC and between moderate KC
and advanced KC (P < 0.05). ARC, PRC and TCT were
significantly lower in KC compared to controls
(P < 0.001), and the lower the stage of KC was
(P < 0.001). The bIOP was significantly different between
both cohorts (P < 0.001), however, no differences were
found between subgroups of KC (P > 0.05). CBI and TBI
showed significant differences between controls and KC
(P < 0.05), whereas TBI was not different between mild
and moderate, or between moderate and advanced KC
(P > 0.05).

Dynamic corneal response parameters in healthy and KC
subjects
The comparison of important DCR and pachymetric pa-
rameters is shown in Table 2. Except for the deflection

amplitude at 1st applanation (A1DefA), all shown pa-
rameters were significantly different between controls
and KC (P < 0.001), controls and mild KC (P < 0.01),
mild and moderate KC (P < 0.01), as well as moderate
and advanced KC (P < 0.001).

Classification of KC by DCR and pachymetric parameters
The complete dataset was randomly divided into a train-
ing and a validation dataset. There were no differences
in age, bIOP, topographic and tomographic parameters
between these datasets (P > 0.05, Table 3). Both models
were tested with the validation dataset. Only these re-
sults were represented.
In LDA, the final model contained the following pa-

rameters, ordered by their importance to the algorithm:
ARTh, SPA1, IntInverseR, PachySlope, Radius and A1V.
The prediction based on Sn and Sp for mild, moderate,
and advanced KC versus healthy were 73%/81%, 62%/
83%, 68%/95% versus 82%/97%, respectively (Fig. 2). The
overall accuracy for classifying the severity of KC was
71% (Table 4).
In RF, the final model (with default cut-off values = 1/

groups (0.25, 0.25, 0.25 and 0.25)) predicted the severity
of mild, moderate, advanced KC versus healthy with a
Sn/Sp of 57%/93%, 63%/92%, 87%/93% versus 100%/88%,
respectively. The overall accuracy was 75% (Table 4).
The final model included the following parameters (Top
10 out of 11), ordered by their importance to the model:
ARTh, InverseR, SPA1, PachySlope, Pachy, IntInverseR,
DAR1, DAR2, Radius and A1DefA (Fig. 3). The final RF
model showed relatively low Sn for mild and moderate
KC. Additionally, almost half of the mild KC cases were
classified as healthy (Table 4). Therefore, the cut-off

Fig. 1 Flow chart of data analysis and selection
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values of the RF model were adjusted to 0.36, 0.16, 0.19
and 0.29, improving especially the Sn for mild KC cases.
The resulting optimized RF model (DKI) predicted mild,
moderate, advanced KC versus healthy with a Sn and Sp
of, 80%/90%, 63%/87%, 72%/95% versus 91%/94%, re-
spectively (Fig. 2). The overall accuracy was 78% (Table
4) and therefore higher than the LDA as well as RF
model with default cut-off values.
Comparing the general KC detection by DKI and LDA

models with established CBI and TBI, all severity

subgroups were assigned to the KC group. Each of the
biomechanically based indices (DKI, LDA and CBI)
showed an accuracy of more than 90% (Table 5). The
prediction of KC by DKI and LDA model was as good as
CBI. The TBI reached a Sn and Sp of 100%/99% in de-
tecting KC.

Discussion
Biomechanical assessment using the Corvis ST is a use-
ful tool to evaluate in vivo corneal biomechanics and is
able to screen for KC and subclinical KC [17, 18]. The
CBI is a combined index, which is based on logistic re-
gression analysis where the final beta is transformed into
a logistic sigmoid function and a cut-off value of 0.5 dis-
criminates healthy (CBI < 0.5) from KC (CBI > 0.5). Clin-
ical studies have shown high sensitivity and specificity in
detecting KC [18, 19, 36, 37]. Contrarily, TBI combines
tomographic and biomechanical data using random for-
est with leave-one-out cross validation, where a cut-off
value of 0.29 provided an excellent accuracy in detecting
KC and eyes with normal topography and tomography
where the fellow eyes showed ectasia [17, 37, 38]. A cut-
off value of 0.75 was found to detect clinical keratoconus
with a Sn and Sp of 100%. However, the indices are not
designed to predict the severity of KC. To the best of
our knowledge, this is the first study that has used a ran-
dom forest algorithm to predict the severity of KC based
on DCR and pachymetric parameters derived from air-
puff tonometry.
In our previous work, we showed with a smaller sam-

ple size, that DCR parameters were different in certain
stages of KC [19]. However, differences were more pro-
nounced between mild KC (TKC 1) and advanced KC
(TKC 3) than between mild (TKC 1) and moderate
(TKC 2) KC as well as between moderate and advanced

Table 2 Comparison of the Top 10 DCR and pachymetric parameters between healthy and KC subjects in order of its importance in
classification models

Healthy Keratoconus P value Mild KC Moderate KC Advanced KC P value* P value† P value‡

ARTh 533 ± 95 236 ± 126 < 0.001 348 ± 128 227 ± 75 132 ± 50 < 0.001 < 0.001 < 0.001

InverseR (mm-1) 0.17 ± 0.04 0.23 ± 0.04 < 0.001 0.20 ± 0.02 0.23 ± 0.03 0.26 ± 0.04 < 0.001 < 0.001 < 0.001

SPA1 (mmHg/mm) 109.5 ± 15.3 68.9 ± 18.9 < 0.001 82.6 ± 13.5 69.3 ± 15.6 54.5 ± 16.0 < 0.001 < 0.001 < 0.001

Pachyslope (μm) 43.1 ± 8.1 72.8 ± 29.5 < 0.001 52.6 ± 12.7 69.2 ± 19.4 97.1 ± 33.0 0.003 < 0.001 < 0.001

Pachy (μm) 564 ± 26 487 ± 42 < 0.001 513 ± 30 491 ± 34 458 ± 43 < 0.001 < 0.001 < 0.001

IntInversR (mm-1) 8.2 ± 1.1 11.7 ± 2.5 < 0.001 9.8 ± 1.3 11.7 ± 1.6 13.8 ± 2.5 < 0.001 < 0.001 < 0.001

DAR2 (mm) 4.20 ± 0.44 5.76 ± 1.14 < 0.001 4.98 ± 0.61 5.66 ± 0.73 6.64 ± 1.30 < 0.001 < 0.001 < 0.001

DAR1 (mm) 1.57 ± 0.06 1.71 ± 0.08 < 0.001 1.65 ± 0.06 1.71 ± 0.07 1.76 ± 0.08 < 0.001 < 0.001 < 0.001

Radius (mm) 7.27 ± 0.83 5.66 ± 0.96 < 0.001 6.43 ± 0.74 5.59 ± 0.69 4.95 ± 0.82 < 0.001 < 0.001 < 0.001

A1DefA (mm) 0.10 ± 0.01 0.11 ± 0.02 < 0.001 0.10 ± 0.01 0.11 ± 0.01 0.12 ± 0.02 0.151 0.002 < 0.001

* Between Healthy and mild KC; † Between mild KC and moderate KC; ‡ Between moderate KC and advanced KC. A1 applanation 1; ARTh Ambrosio relational
thickness horizontal; DAR1/2 ratio of central and peripheral deformation at 1/2 mm; DefA deflection amplitude; InverseR inverse concave radius;
IntInversR integrated inverse (concave) radius, Pachy corneal thickness measured by Corvis ST; Radius anterior corneal curvature from 2-dimensional corneal cross-
section by Corvis ST; SPA1 stiffness parameter at 1st applanation. Bold type signifies P < 0.05

Table 3 Comparison of demographics between training and
validation dataset

Training dataset Validation dataset P value

N 308 126 N.A.

Healthy 83 33

Mild KC 71 35

Moderate KC 73 35

Advanced KC 81 23

Age (years) 32.0 ± 8.0 32.3 ± 8.1 0.721

Km (D) 45.9 ± 3.6 45.9 ± 3.8 0.898

Kmax (D) 51.5 ± 6.7 51.2 ± 6.5 0.617

I-S value (D) 4.3 ± 4.0 3.8 ± 3.5 0.250

ARC (mm) 7.1 ± 0.7 7.1 ± 0.7 0.668

PRC (mm) 5.5 ± 0.7 5.6 ± 0.7 0.535

TCT (μm) 499 ± 54 497 ± 56 0.810

BAD-D 5.7 ± 4.4 5.4 ± 4.4 0.531

bIOP (mmHg) 14.5 ± 2.1 14.6 ± 2.1 0.659

ARC anterior radius of curvature; BAD-D Belin/Ambrósio total deviation value;
bIOP biomechanical intraocular pressure by Corvis ST; I-S inferior-superior;
Km mean keratometry values; Kmax maximal keratometry value; N number of
subjects; N.A. not applicable; PRC posterior radius of curvature; TCT thinnest
corneal thickness. Bold type signifies P < 0.05
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Fig. 2 Comparison ROC curves of final LDA (left) and RF model with optimized cut-offs (DKI, right). ROC, receiver operating characteristics; AUC,
area under curve; LDA, linear discriminant analysis; DKI, Dresden keratoconus index

Table 4 Confusion matrix of keratoconus severity prediction by LDA and RF models on validation dataset
Reference classification based on TKC

Final LDA model Healthy Mild KC Moderate KC Advanced KC Overall accuracy

Prediction Healthy 31 7 0 0 71%

Mild KC 2 19 5 0

Moderate KC 0 9 21 4

Advanced K 0 0 9 19

Sn/Sp 82%/97% 73%/81% 62%/83% 68%/95%

Final RF model (default cut-off) Healthy Mild KC Moderate KC Advanced KC Overall accuracy

Prediction Healthy 33 10 1 0 75%

Mild KC 0 20 6 0

Moderate KC 0 4 22 3

Advanced K 0 1 6 20

Sn/Sp 100%/88% 57%/93% 63%/92% 87%/93%

Final RF model (optimized cut-off) Healthy Mild KC Moderate KC Advanced KC Overall accuracy

Final prediction (DKI) Healthy 30 5 1 0 78%

Mild KC 3 28 6 0

Moderate KC 0 1 22 5

Advanced KC 0 1 6 18

Sn/Sp 91%/94% 80%/90% 63%/87% 72%/95%

DKI Dresden keratoconus index based on optimized RF model; KC keratoconus; LDA linear discriminant analysis; RF random forest; Sn sensitivity; Sp = specificity;
TBI tomographic and biomechanical index. Bold signifies correct prediction by LDA or RF model
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is lower in more advanced KC [22]. Koh et al. have ob-
served similar results for DAR2, IntInverseR and SPA1
based on anterior and posterior curvature as well as cor-
neal thickness. Steeper corneas (anterior and posterior
curvature) have been associated with higher DAR2,
higher IntInverseR and lower SPA1 [40].
For classification purposes, we decided to choose TKC

as the target variable instead of ABCD grading, because
of its higher complexity of anterior and posterior curva-
ture, and corneal thickness evaluation. Furthermore, two
different machine learning algorithms were used to pre-
dict the severity of KC using DCR and pachymetric pa-
rameters. The amount of DCR parameters were reduced
while they were checked for multicollinearity (13 of 36
DCR parameters were removed). An improvement of
each model (LDA and RF) was achieved by specific fea-
ture elimination methods. Finally, the LDA model con-
tained six DCR parameters (ARTh, SPA1, IntInverseR,
PachySlope, Radius and A1V) to predict the severity of
KC, whereas the RF model contained 11 parameters
(ARTh, InverseR, SPA1, PachySlope, Pachy, IntInverseR,
DAR1, DAR2, Radius, A1DefA and A2DefAA).
In the first instance, LDA separated the four groups

(controls, mild, moderate, and advanced KC) with an
overall accuracy of 71%. The Sn and Sp were sufficient
for controls and mild KC but inadequate for moderate
and advanced KC. The RF model using default cut-off
values showed excellent Sn and Sp for healthy controls
and advanced KC. However, Sn was inadequate for mild
and moderate KC, where mild KC were predicted as
healthy in 29% of cases. Therefore, the RF model was
optimized by improving cut-off values that led to excel-
lent Sn and Sp for healthy controls and mild KC but to
the detriment of Sn of advanced KC. Another reason for
optimizing the cut-off values was the ability to better dif-
ferentiate between healthy and mild KC due to clinical
relevance. The optimized RF model is called Dresden
Biomechanical Keratoconus Severity Index (DKI) and
reached the highest overall accuracy of 78% compared to

LDA and RF model with default cut-offs. Recently, Lan-
genbucher et al. published a study with a similar aim
where they utilized LDA and support vector machine
(SVM) algorithms [41]. There were five subgroups
(healthy and TKC 1–4), while the number of subjects
were the same compared with this study. The overall ac-
curacy was 65 and 64% for SVM and LDA, respectively
[41]. These values were lower than in the present study.
Moreover, the DKI accomplished to be as good as the

CBI in detecting keratoconus. In this study, surprisingly,
Sn of the CBI was lower than in previous studies [18, 19,
36, 37], while a cut-off of 0.5 was used as published by
Vinciguerra et al. [18]. The reason for this might be that
the training process and the training dataset of the DKI
was more suitable in separating mild KC from healthy
compared with CBI. Nevertheless, DKI was comparable
to the CBI in predicting KC in general. As mentioned
previously, the TBI aims to predict subclinical ectasia by
combining topographic and tomographic data with DCR
parameters using a cut-off value of 0.29 [17]. In this
study, a cut-off value of 0.79 was used for separating
healthy from clinical keratoconus as described by
Ambrosio et al. [17]. They found a Sn and Sp of 100%
[17]. Our results reveal that the TBI showed only one
misclassification in our study cohort, which resulted in
excellent Sn, Sp, and accuracy.
A limitation of this pilot study is the small sample size

of each group. Additionally, the single center design
limits the accuracy concerning different races, devices,
and users. The model might be improved by including
more cases in the training database from different
centers.

Conclusion
In this study, we developed a classification model that
predicts the severity of KC with high accuracy but with-
out compromising Sn and Sp in detecting KC when com-
pared with the CBI. However, the most
misclassifications occurred in moderate KC because of

Table 5 Confusion matrix of keratoconus detection by LDA, optimized RF (DKI), CBI and TBI on validation dataset
Reference diagnosis (healthy– KC)

Healthy KC Sn/Sp Accuracy

Final LDA Healthy 31 7 93%/94% 93%

KC 2 86

DKI Healthy 30 6 94%/91% 93%

KC 3 87

CBI Healthy 31 11 88%/94% 90%

KC 2 82

TBI Healthy 32 0 100%/97% 99%

KC 1 93

CBI Corvis biomechanical index; DKI Dresden keratoconus index based on optimized RF model; KC keratoconus; LDA linear discriminant analysis; Sn sensitivity;
Sp specificity; TBI tomographic and biomechanical index. Bold signifies correct prediction by LDA or RF model
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an overlap with mild and advanced KC. The DKI is
mainly influenced by pachymetric parameters. However,
DCR parameters describing properties of corneal de-
formation against the air-puff have a major impact on
DKI as well. The clinical importance of the DKI is that a
sole measurement of Scheimpflug-based tonometry is
able to predict the severity of KC without any topo-
graphical and tomographical information. This could be
interesting for clinical users that have a standalone Cor-
vis ST without a Pentacam. Further studies should be
conducted to determine the suitability of the DKI as a
follow up parameter.
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