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Abstract

Background: To develop and validate a deep learning-based approach to the fully-automated analysis of macaque
corneal sub-basal nerves using in vivo confocal microscopy (IVCM).

Methods: IVCM was used to collect 108 images from 35 macaques. 58 of the images from 22 macaques were used
to evaluate different deep convolutional neural network (CNN) architectures for the automatic analysis of sub-basal
nerves relative to manual tracings. The remaining images were used to independently assess correlations and inter-
observer performance relative to three readers.

Results: Correlation scores using the coefficient of determination between readers and the best CNN averaged
0.80. For inter-observer comparison, inter-correlation coefficients (ICCs) between the three expert readers and the
automated approach were 0.75, 0.85 and 0.92. The ICC between all four observers was 0.84, the same as the
average between the CNN and individual readers.

Conclusions: Deep learning-based segmentation of sub-basal nerves in IVCM images shows high to very high
correlation to manual segmentations in macaque data and is indistinguishable across readers. As quantitative
measurements of corneal sub-basal nerves are important biomarkers for disease screening and management, the
reported work offers utility to a variety of research and clinical studies using IVCM.
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Background
In vivo confocal microscopy (IVCM) of the cornea al-
lows for non-invasive acquisition of two-dimensional im-
ages, enabling detailed corneal sensory nerve fiber
assessment in both clinical and research settings. As the
most innervated tissue in the human body, the cornea
offers insight into sensory neuropathy rendering the
clinical applications of its imaging widespread. Quantita-
tive measurements of corneal sub-basal nerves are,

therefore, important biomarkers for disease screening
and management. Measures of corneal sub-basal plexus
nerve fiber count, density and length have been reported
as having clinical utility in diabetes [1, 2], human im-
munodeficiency virus [3], Parkinson’s disease [4], mul-
tiple sclerosis [5, 6], as well as a number of other
systemic illnesses. Animal models of these and other dis-
eases play an important role in understanding the dis-
ease processes as efforts toward developing new and
effective therapeutics are made. The manual derivation
of these metrics, however, is time consuming, requires
expertise, and is inherently subjective. Automation is
therefore necessary and will facilitate standardized
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analyses across centers as researchers investigate new
endpoints in wide ranging clinical applications. As noted
by Dabbah [7], this lack of standardized assessment of
corneal sub-basal nerve fiber density is a major limita-
tion to wider adoption in clinical settings. Furthermore,
the lack of a commonly accepted robust automated ana-
lysis method that provides centralized processing limits
large-scale multicenter trials.
Several different approaches have been used to

automate the task of nerve fiber tracing in IVCM.
The challenging image conditions of noise, intensity
heterogeneity and low contrast features are com-
pounded by the presence of dendritic, epithelial and
inflammatory cells that can have similar features to
the nerves being delineated. Parissi adopted a graph-
traversal method that traces between seed-points,
which is an excellent way to describe the path of a
nerve as the method effects constraints on feasible
deviations of the nerve’s path and also bridges regions
where the nerve’s intensity diminishes given the con-
focal nature of the modality [8]. Fundamental to the
success of such an approach is the choice of start
and end points of the graph as to work these must
belong to the same nerve. The original method for
seed point detection was described by Scarpa, where
the image is covered in a grid of evenly spaced line-
rows and columns [9]. Nerves are detected at the
intersection of lines based on intensity, and a tracing
approach is used to follow the nerve in a direction
perpendicular to its highest gradient. A final classifi-
cation uses fuzzy c-means. Dabbah put an emphasis
on carefully constructed filter banks applied as a fea-
ture detector and enhancing the nerves in accordance
to their localized and dominant direction [7]. A final
binary image of nerves is created using a global
threshold and skeletonization of the result. This work
has resulted in the freely available ACCMetrics tool,
widely accepted as a standard in clinical IVCM image
analysis [2, 7, 10–13].
More advanced machine learning techniques have

been added to such processing pipelines for a more so-
phisticated final arbitration between nerve fiber and
background. Guimarães added a pixel-by-pixel classifier
to hysteresis thresholded images to create a binarized
nerve map [14]. The features that fed the classifier were
intensity based and included edge magnitudes. Structure
enhancement used log-Gabor filters, and the method fa-
cilitates fast processing of large datasets. Annunziata de-
veloped a curvilinear structure model employing a set of
filter banks to perform feature detection in the image
[15]. Additionally, contextual information was added via
learned filters and a final classification then takes both
of these results to yield an estimate at each pixel of
nerve and background. The approach is reliant on both

manual tuning and supervised learning for the feature
designs, parameters and finally the thresholding. The re-
sults using cross validation (CV) are impressive.
It can be seen that, in general, these methods have

evolved around carefully designed filter banks acting as
feature extractors with a final classification step. The
best example of this is the ACCMetrics tool, which, be-
ing developed using clinical data, offers a solution to the
analysis of human corneal nerves acquired within a clin-
ical environment. The methods, as implemented, should
not, therefore, be expected to work “out of the box” on
macaque data. As macaque models are used in a variety
of diseases characterized by corneal sensory nerve fiber
loss, we have developed and characterized a novel ap-
proach for automated analysis of nerve fibers, leveraging
more current technologies in the world of computer vi-
sion and machine learning to process macaque IVCM
images that are inherently of lower quality than human
ICVM image [16–20].
Recent advances and superior levels of performance

seen in the use of deep convolutional neural networks
(CNNs) has resulted in their widespread adoption for a
variety of image recognition tasks [21, 22]. The deep
learning paradigm is to learn both the feature extraction
(filters) and classifier using CNNs and supervised learn-
ing. The CNNs are capable of building rich, layered
(deep) representations of the data which are then classi-
fied through additional layers of representation and
learned associations. Such significant technical advances
in supervised learning have already been successfully ap-
plied to automatically tracing corneal nerves in IVCM
using clinical data [23, 24]. This study reports on using
similar deep learning-based architectures for the auto-
mated tracing of corneal nerve fibers in IVCM images of
macaque corneas.

Methods
Data
All data reported in this study are from archived IVCM
images acquired from anesthetized pigtailed macaques
(Macaca nemestrina) using the Heidelberg HRTIII out-
fitted with the Rostock corneal module; the macaque
image acquisition protocol was approved by the Johns
Hopkins University IACUC and all animal work was in
accordance with the guidelines outlined in the Animal
Welfare Act and Regulations (United States Department
of Agriculture) and the 8th edition of the Guide for the
Care and Use of Laboratory Animals (National Institutes
of Health).
A single scan acquired images at different depths at up

to 30 frames a second. In all cases, each image covered a
field of view of 400 × 400 μm over 384 × 384 pixels.
Using this information, the total lengths (mm) of the
tracings can be converted to a measure of nerve length
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per image (mm/mm2). This follows the convention of
Dabbah in reporting the corneal nerve fiber length
(CNFL), defined as the sum of the length of all nerves
per image [12]. For ground-truthing, sub-basal nerves
were traced by experienced readers using the ImageJ
plugin, NeuronJ [25]. Importantly, this is done at the
pixel level; that is, the results of the labelling are images
with each pixel labeled as belonging to either nerve or
background.
In total, 104 sub-basal plexus images were acquired

from 35 macaques. Each was manually selected from all
acquired images based on quality and accurate position-
ing at the sub-basal plexus. The data was split into two
parts to (1) assess different CNN architectures using CV
and (2) validate the best performing model in an inter-
observer study. The split used was 58 images from 22
macaques, and the sequestered data comprised 46 im-
ages from 13 macaques.

Automated nerve Fiber assessment
Based on the manually labelled data, a supervised deep
learning approach to semantic segmentation was used to
associate input images to ground truth. This is done by
presenting the network, the image data, and labels to
create pixel-wise associations. Categorical cross-entropy
was used as the loss function that is minimized using
backpropagation. The output of a trained network is a
nerve probability map where pixels are in the range 0,
indicating no nerve data, to 1, just nerve data.

Pre-processing and post-processing
Prior to presentation to the network, a pre-processing
step is used to account for differing background illumin-
ation across the image (Fig. 1). This effect is all the more
pronounced in macaque images given the increased
curvature of the cornea in the macaques resulting in a
faster roll-off of image intensities toward the periphery

of the image than seen in human clinical data. Back-
ground illumination is first estimated by opening the
image using grayscale morphology and a large structur-
ing element, which is a circle with a radius of 4 μm (10
pixels). It then subtracts that result from the original
image to reduce the effect of changing background in-
tensity. This is known as top hat filtering, where in this
case, the brighter structures smaller than the structuring
element are preserved.
Post-processing is applied to the network’s output to

threshold the probabilities, in the range 0 to 1, and re-
turn a final, binary result. Hysteresis thresholding with a
lower value of 0.125 and an upper value of 0.275 are
used for all cases in this study. The binary image is then
skeletonized [26] and components of less than 35 pixels
are removed from consideration.
The combination of illumination correction on the

front end and hysteresis thresholding on the back end
works well in this application where the confocal nature
of the imaging system means that nerve fibers can come
in and out of view (focus); that is, one must be locally
sensitive and adaptive to the imaging conditions. The
overall processing pipeline is illustrated in Fig. 2, with
the free parameters of the method given above; in the
case of the flat-fielding, it is simply the size of the mor-
phological structuring element used to create the back-
ground image, and for post-processing it is the
thresholds and the minimum individual component size.
While the training stage can take hours, the final ana-
lysis takes, on average, with the image data in memory,
0.3 s per image on an i7 PC using an Nvidia GTX 1080
graphics card for pre-processing, inference and post-
processing.

Neural network architectures
Three similar architectures for semantic segmentation
were assessed, where candidate architectures were

Fig. 1 Pre-processing of the input images using background subtraction. The input images are first pre-processed using a simple flat-fielding
technique. On the left is an example input image. Its background intensity is estimated using morphological opening (center image). These
background intensities are then subtracted from the original image to produce the image on the right showing more even contrast across its
entire field of view
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limited to networks that learned image to image map-
pings as a per-pixel classification. Common to the three
architectures studied are encoding and decoding pro-
cessing paths used to generate a final segmentation. Ex-
periments involved altering the depth of the networks
and also the optimization parameters, such as learning
rate, decay and choice of optimization algorithm as dis-
cussed in more detail below.
The first architecture is the autoencoder network [27],

as previously reported [28]. The second, a U-Net [29], is
basically an autoencoder network with additional con-
nections across the encoding and decoding paths. The
third is an extension of this method that adds skip con-
nections within the encoding and decoding paths. This
latter approach does this using residual branches that, in
alleviating the vanishing gradient problem, facilitates
deeper networks to be trained [30]. Performance is
gauged using the coefficient of determination (R2) to as-
sess strength of correlation between manual and auto-
mated results, as well as Bland-Altman analysis.

Deep learning and cross validation (CV)
The different deep learning architectures were evaluated
using 5-fold CV, a standard approach for splitting train
and test steps. The aforementioned pre- and post-
processing steps were fixed for each as these admit to
minimal parameterization as previously reported [31].
While these parameters could also be learned using the

CV paradigm, they were simple enough to tune manu-
ally once and left alone for all further experiments.
Importantly, in application of CV, folds were chosen

such that a single subject did not appear in both the
training and test sets. For each fold, the training sets
were additionally randomly split at each epoch into 90%
training and 10% validation thereby allowing us to gauge
how well the model’s learning was proceeding and when
it should stop. This common practice is key in being
able to decide on the optimizer used, batch sizes, as well
as other hyper-parameters such as learning rate and
learning decay as, in general, the loss value should de-
crease in a progressive way as the network learns.
Results for all subjects and folds were pooled and

compared to results using other architectures and
hyper-parameters. For each of these experiments, a final
correlation score between lengths reported by the man-
ual tracings and those from the automated approach
allowed us to rank the performance of the different
implementations and derive the best model for each of
the architectures used.

Results
Cross validation data and results
This dataset comprised 58 IVCM images taken from 22
different macaques. To embellish the data, significant
augmentation involving random rotations, skews and
flips of the images was used during the training process.
Summary correlations between the manual tracing and

Fig. 2 The entire processing pipeline used in this study. The input image (a) is pre-processed to compensate for variation in the background
illumination (b). The segmentation, performed using deep learning, generates a probability image that assigns a score between 0 and 1 to each
pixel (c) depicting a pixel-wise nerve classification. The final post-processing step is to binarize and skeletonize that result (d)

Table 1 Cross validation performance for the macaque data (N = 58 from 22 subjects)

Architecture 5-Fold CV R2 Number of trainable parameters

Autoencoder 0.733 1,330,498

U-Net (deepNerve) 0.859 487,730

U-Net with Residual Branches 0.731 516,578

ACCMetrics 0.718 N/A

CV= cross validation
R2: coefficient of determination
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Fig. 4 The best performing U-Net architecture used in these analyses, titled deepNerve. Depiction of the U-Net architecture showing both the
encoding and decoding paths and their dimensions. For the given input image (left), it outputs two images giving the probability score, at each
pixel, of belonging to one of the two classes (right). The final softmax layer ensures these are normalized and can thus be interpreted
as probabilities

Fig. 3 U-Net versus manual tracing correlation and Bland-Altman plots (CV data). Correlations for the best performing U-Net result – deepNerve –
to the manual result for the macaque data using 5-fold CV (left). The limits of agreement show no systematic differences as the manual count
increases or decreases. The reproducibility coefficient (RPC), 1.96 × SD, is 3.8 mm/mm2 (mean difference is 0.3 mm/mm2)
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the automated approaches are given in Table 1 below,
where we have included the result using ACCMetrics, a
clinical tool applied here to macaque data. Overall, the
best performing architecture was the U-Net (Fig. 3). Its
configuration is given in Fig. 4, where the optimizer used
is the ADAM [32] over 650 epochs; with the learning
rate initialized at 10− 3, dropping 5− 4 every 10 epochs; a
batch size of 8; and a drop-out rate of 0.2. In the trad-
ition of naming models for given applications, we refer
to this configuration as deepNerve for the remainder of
this paper.
In this paper, we interpret the correlation coefficients

using Hinkle’s criteria [33] of: very high (≥0.9), high
(≥0.7 and < 0.9) and moderate (≥0.5 and < 0.7).

Inter-observer analysis method
The best performing architecture, deepNerve of Fig. 4,
was then trained on all folds and then frozen for inter-
observer analysis; i.e., using all 58 images from 22 ma-
caques in the CV data set. We then applied this model
to the sequestered group of 46 images from 13 ma-
caques to validate performance. In this case, three
readers were used to independently trace all images
(N = 46). This allows us to first see how well the best
performing model can generalize to truly unseen data,
and also to understand how well, in such an applied en-
vironment, it performs with respect to expert readers.
Example manual and automated segmentation results
from this part of the study are given in Fig. 5.

Coefficients of correlation and intraclass correlation
coefficients (ICCs) from two-way ANOVA analysis were
derived to compare all readers and deepNerve. The re-
sults are shown in Table 2 with scores ranging from bor-
derline high (≥0.7) to very high (≥0.9) [33]. The higher
the value, the more the agreement, overall, between the
two readers. Comparing average correlation scores for
each reader relative to all other readers including deep-
Nerve, yields R2 values of 0.79 (R1), 0.71 (R2), 0.81 (R3)
and 0.80 (deepNerve). The ICC score across all four ob-
servers was 0.84, the same as the average ICC score be-
tween deepNerve and all individual readers. Of note, the
manual tracings that were used to train the network on
the previously acquired data were from reader 1.

Comparison to the average reader
While CNFL is the biomarker reported most commonly
in the literature, it is invariant to location, and the con-
cordance of this value relative to one that is manually
derived is not necessarily a good indicator of accuracy of

Fig. 5 Example macaque data used during the inter-observer evaluation study. The images in the first column (a) are input images; the second
column shows their manual tracings (b); the third column images are the probability images from the output of the neural network (c); and the
final column gives those images thresholded and skeletonized (d)

Table 2 R2 correlations and intraclass correlation coefficients
across all readers

Reader R1 R2 R3

Metric R2 ICC R2 ICC R2 ICC

R2 0.69 0.84

R3 0.82 0.87 0.75 0.80

deepNerve 0.85 0.85 0.69 0.75 0.85 0.92

ICC= inter-correlation coefficient
R2: coefficient of determination

Oakley et al. Eye and Vision            (2020) 7:27 Page 6 of 11



tracings. To assess this and gain confidence in our auto-
mated reporting, we used the Jaccard Index (JI), or
intersection-over-union, to report the overlap of the au-
tomated versus the manual segmentation; a value of 1
being perfect overlap. Given each traced nerve is only
one-pixel thick, we define the intersection to be within
three pixels to account for insignificant differences.
Average and standard deviation JI scores are given in
Table 3 below.
A final comparison looked at correlations to the aver-

age reader CNFL values. These considered 1) deep-
Nerve (Fig. 6) and 2) ACCMetrics applied to the
sequestered macaque data of 46 images (Fig. 7). For
deepNerve, the limits of agreement (LOA) about the
mean are given by the reproducibility coefficient (RPC)
of 4 mm/mm2. For ACCMetrics, the RPC increased to
4.5 mm/mm2. For both cases, the LOA show no appar-
ent bias, and the correlations are high [33], with deep-
Nerve being at 0.85 and ACCMetrics at 0.70. The means
(and standard deviations) of the CNFL parameter for the

average reader, deepNerve and ACCMetrics are: 18.28
(3.92), 21.46 (5.34), 13.75 (3.99), respectively. A direct
comparison of CNFL between deepNerve and ACC-
Metrics is given in Fig. 8, and we also looked at the de-
rived parameter, fractal density, for deepNerve and
ACCMetrics, as reported in Fig. 9.
There is widespread interest in using in vivo basal-

nerve density assessment as a biomarker gauging corneal
sensory nerve fiber loss. This is because of its relevance
in a number of neuropathies and also systemic diseases.
With such interest comes the need to automate the ana-
lysis, which, ahead of clinical adoption, also requires a
validation of the approach. This study reports on a
means of automating the analysis, here leveraging state
of the art segmentation methods based on deep CNNs.
It also presents a validation of this approach as applic-
able for use with macaque data. Furthermore, given a ro-
bust segmentation, derivative measures such as fractal
density [34] and tortuosity [15] may also be added to the
armamentarium of biomarkers supportive of this
modality.
The approach documented herein builds upon our

original methods that were applied originally to
ex vivo studies of immunostained corneal whole
mounts. Its extension to in vivo data and corneal
confocal imaging using deep learning was motivated
by our preclinical research using animal models. Such
research is important to understanding disease

Table 3 Average and standard deviation Jaccard Indices across
readers

Reader R1 R2 R3

JI Average 0.87 0.80 0.85

JI STD 0.04 0.08 0.06

JI= Jaccard index
STD= standard deviation

Fig. 6 U-Net versus manual tracing correlation and Bland-Altman plots (sequestered data). Application of the best performing U-Net architecture
of deepNerve to the sequestered 46 images from 13 new subject macaques. This is our best performing method for the analysis of macaque
data. The reproducibility coefficient (RPC), 1.96 × SD, is 4 mm/mm2 (mean difference is 1.5 mm/mm2)
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Fig. 7 ACCMetrics versus manual tracing correlation and Bland-Altman plots (sequestered data). Application of ACCMetrics to 43 of the 46
macaque images (three images did not process). Note that ACCMetrics was developed using clinical data, so the performance is expected to
degrade using this data set. The reproducibility coefficient (RPC), 1.96 × SD, is 4.5 mm/mm2 (mean difference is − 4.5 mm/mm2)

Fig. 8 ACCMetrics versus U-Net correlation and Bland-Altman plots (sequestered data). Comparison of deepNerve to ACCMetrics for the CNFL
parameter (N = 43) shows that the U-Net in general reports higher values. The reproducibility coefficient (RPC), 1.96 × SD, is 4.5 mm/mm2 (mean
difference is − 5.4 mm/mm2)
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mechanisms as well as response to therapeutics; and
by extension, the analysis method is also clinically
relevant, particularly if the reported performance can
be achieved with clinically acquired data from human
subjects. This would require additional validation
studies [2].
Comparison is made in this work to ACCMetrics, but

only to reference an alternative method as this software
has not been developed for non-human analysis. This is
an important caveat as firstly the anatomy is different
with a known increase in curvature of the cornea in the
macaques and, in our review, macaque nerves may be
generally thinner. With that said, the performance is still
good, has strong correlation to the manual readers, and
no exhibited bias in the Bland-Altman analysis. This
serves, therefore, to speak to the overall robustness of
the implementation. It also forewarns that, to apply our
technique to clinical data, we will likely have to re-train
the algorithm using just clinical data, as might be ex-
pected. Given the successful application of a similar
approach to clinical data, Colonna and Williams have
both firmly established this to be a method that can
be directly applied to human data [23, 24]. Interest-
ingly, both use the same U-Net architecture, although
Williams et al. apply the network to patches of the
entire image, taking a majority decision where the
patches overlap [24].
The limitations of this study relate firstly to the limited

amount of data used. We attempt to address this by [1]

utilizing extensive data augmentation together with the
well-established technique of cross-validation in compar-
ing the different CNN models’ performance; and [2] by
using a sequestered data set for the inter-observer ana-
lysis. In both cases, we consider the reported perform-
ance to be characteristic of performance in unseen data.
A second limitation is a comparison to existing tech-
niques. This is hard to circumvent as this paper presents
the first method explicitly developed for use in macaque
data. The comparison to ACCMetrics is done as this is a
validated clinical approach, so while not strictly applic-
able, it is the most established technique and one to
which all new methods should be contrasted. It should
also be noted that, in using a supervised learning ap-
proach, we are requiring that the input data be from the
correct corneal plexus and do not, in general, contain
structure from outside of the sub-basal layer. We cur-
rently manually select these images from the entire con-
focal stack but are also working on methods to automate
this.

Conclusions
In summary, we present a novel approach to the analysis
of sub-basal nerves in IVCM imaging of macaque cor-
neas. In conjunction with relatively simple pre- and
post-processing, excellent correlation with manual read-
ings was achieved. In a comparison across observers, we
see that deepNerve is indistinguishable from manual
tracings. Lastly it should be noted that, while IVCM is

Fig. 9 Fractal dimension scores of ACCMetrics versus U-Net correlation and Bland-Altman plots (sequestered data). Comparison of the reported
Fractal Dimensions of deepNerve and ACCMetrics (N = 43) shows that the measurements are moderately correlated. The reproducibility
coefficient (RPC), 1.96 × SD, is 0.077 (mean difference is 0.18)
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currently the modality of choice, translation to other
modalities should only require retraining of the neural
network. There is, for example, increasing interest in the
use of optical coherence tomography (OCT), the im-
aging standard of care in ophthalmology, for corneal
nerve imaging [35]. If such a scenario evolves, this would
make clinical adoption all the more likely in the future
given the proliferation of OCT devices and the ease of
acquisition.

Appendix
The U-Net implemented to realize the segmentation
used Keras version 2.2.4 and TensorFlow 1.12. The con-
volution layers shown in Fig. 4 use Conv2D, with the fil-
ter sizes as given in the figure. Both dropout and batch
normalization are used, ordered as in the figure: dropout
occurring between the convolution layers, batch
normalization after convolution, but before max pooling.
So, for example, a single encoding block would look like:
conv2 = Conv2D(192_sz, (3, 3), activation='relu', pad-

ding='same', data_format='channels_last')(pool1)
conv2 = Dropout(drop_out_rate)(conv2)
conv2 = Conv2D(192_sz, (3, 3), activation='relu', pad-

ding='same', data_format='channels_last')(conv2)
conv2 = BatchNormalization()(conv2)
pool2 = MaxPooling2D((2, 2))(conv2)
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